Scatterometer Applications in the European Seas

  • A. Stoffelen

The EUMETSAT Advanced Scatterometer ASCAT on MetOp-A was launched on 19 October 2006 as the third wind scatterometer currently in space joining up with the ESA ERS-2 and the NASA SeaWinds scatterometers. Scatterometers measure the radar backscatter from windgenerated cm-size gravity-capillary waves and provide high-resolution wind vector fields over the sea. Wind speed and wind direction are provided with high quality and uniquely define the mesoscale wind vector field at the sea surface. The all-weather ERS scatterometer observations have proven important for the forecasting of dynamical and severe weather. Oceanographic applications have been initiated using winds from SeaWinds on QuikSCAT, since scatterometers provide unique forcing informa- tion on the ocean eddy scale. Together, ERS-2, ASCAT and SeaWinds provide good coverage over the oceans and are now used routinely in marine and weather forecasting. In the coming years, further progress in high reso lution processing, closer to the coast, and with improved geophysical interpretation is expected.


Numerical Weather Prediction Wind Vector Numerical Weather Prediction Model Radar Backscatter Wind Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303: 978-983CrossRefGoogle Scholar
  2. de Haan S, Stoffelen A (2000) Ice Discrimination Using ERS scatterometer, OSI SAF R&D report,
  3. Hersbach H, Stoffelen A, de Haan S (2007) An improved C-band scatterometer ocean geophysical model function: CMOD5, J Geophys Res 112 (C3): doi:10.1029/2006JC003743Google Scholar
  4. Isaksen L, Stoffelen A (2000) ERS-Scatterometer Wind Data Impact on ECMWF’s Tropical Cyclone Forecasts. IEEE T Geosci Rem Sens (special issue on Emerging Scatterometer Applications) 38 (4): 1885-1892Google Scholar
  5. Janssen PAEM, Wallbrink H, Calkoen CJ, van Halsema D, Oost WA, Snoeij P (1998) VIERS-1 scatterometer model. J Geophys Res 103 (C4): 7807-7831CrossRefGoogle Scholar
  6. Kelly KA, Dickinson S, McPhaden MJ, Johnson GC (2001) Ocean currents evident in satellite wind data,” Geophys Res Lett 28 (12): 2469-2472Google Scholar
  7. KNMI scatterometer site,
  8. Lin CC, Stoffelen A, de Kloe J, Wismann V, Bartha S, Schulte HR (2003) Wind retrieval capability of rotating, range-gated, fanbeam spaceborne scatterometer. SPIE Proc 4881: 268-279CrossRefGoogle Scholar
  9. Liu WT, Xie X (2006) Measuring ocean surface wind from space. In: Gower J (ed) Remote Sensing of the Marine Environment, Manual of Remote Sensing, 3rd Edition, vol 6, Amer. Soc. for Photogrammetry and Remote Sensing, pp 149-178Google Scholar
  10. Portabella M, Stoffelen A (2006) Development of a global scatterometer validation and monitoring. Visiting Scientist report for the EUMETSAT OSI SAF;
  11. Portabella M, Stoffelen A (2001) Rain detection and quality control of SeaWinds. J Atm and Ocean Techn 18 (7): 1171-1183CrossRefGoogle Scholar
  12. Portabella M, Stoffelen A (2003) A probabilistic approach for SeaWinds data assimilation. Quart J R Met Soc 130: 127-159CrossRefGoogle Scholar
  13. Stoffelen A, Portabella M (2006) On Baysian Scatterometer Wind Inversion. IEEE Trans Geosci Rem Sens 44: 1523-1533CrossRefGoogle Scholar
  14. Stoffelen A (1998a) Scatterometry”, thesis RUU, 1998;∼proefsch/01840669/inhoud.htm
  15. Stoffelen A (1998b) Error modeling and calibration: towards the true surface wind speed. J Geophys Res 103 (C4): 7755-7766CrossRefGoogle Scholar
  16. Stoffelen A, Anderson D (1997a) Scatterometer Data Interpretation: Measurement Space and inversion. J Atm and Ocean Techn 14 (6): 1298-1313CrossRefGoogle Scholar
  17. Stoffelen A, Anderson D (1997b) Scatterometer Data Interpretation: Transfer Function Estimation and Validation. J Geophys Res 102 (C3): 5767-5780CrossRefGoogle Scholar
  18. Stoffelen A, van Beukering P (1997) The impact of improved scatterometer winds on HIRLAM analyses and forecasts. BCRS study contract 1.1OP-04, HIRLAM technical report 31, published by IMET, Dublin, IrelandGoogle Scholar
  19. Vogelzang J (2006) On the quality of high resolution wind fields. Report for the EUMETSAT NWP SAF, NWPSAF-KN-TR-002, Version 1.2;
  20. Wagner W, Scipal K, Pathe C, Gerten D, Lucht W, Rudolf B (2003) Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J Geophys Res 108 (D19): 4611CrossRefGoogle Scholar
  21. Zecchetto S, Cappa C (2001) The spatial structure of the Mediterranean Sea winds reveale*d by ERS-1 scatterometer. Int J Rem Sens 22 (1): 45-70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • A. Stoffelen
    • 1
  1. 1.Royal Netherlands Meteorological InstituteNetherlands

Personalised recommendations