Microwave Aperture Synthesis Radiometry: Paving the Path for Sea Surface Salinity Measurement from Space

  • J. Font
  • A. Camps
  • J. Ballabrera-Poy

This chapter summarises the main objectives and characteristics of the ESA’s SMOS mission and its remote sensing applications. The SMOS payload is MIRAS, a new type of instrument in Earth observation: the first two-dimensional aperture synthesis interferometric radiometer. It operates at L-band, has multi-angular and multi-look imaging capabilities, and can be operated in dual-polarisation or full-polarimetric modes. Due to its novelty, the principles of operation, imaging characteristics and its main performance parameters (spatial resolution and radiometric sensitivity and accuracy) are described, as well as the approach selected in the retrieval algorithms of sea surface salinity.


Brightness Temperature Aperture Synthesis Vegetation Water Content Radiometric Sensitivity Brightness Temperature Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acero-Schertzer CE, Hansen DV, Swenson MS (1997) Evaluation and diagnosis of surface currents in the National Centers for Environmental Prediction’s ocean analyses. J Geophys Res 102: 21037-21048CrossRefGoogle Scholar
  2. Anterrieu E, Picard B, Martin-Neira M, Waldteufel P, Suess M, Vergely JL, Kerr Y, Roques S (2004) A strip adaptive processing approach for the SMOS space mission. In: IEEE Int Geosci Rem Sens Symp 2004 Proceed 3: 1922-1925CrossRefGoogle Scholar
  3. Ballabrera-Poy J, Murtugudde R, Busalacchi AJ (2002) On the potential impact of sea surface salinity observations on ENSO predictions. J Geophys Res 107: 8007-8017CrossRefGoogle Scholar
  4. Bará J, Camps A, Torres F, Corbella I (1998) Angular resolution of two-dimensional hexagonally sampled interferometric radiometers, Radio Sci 33: 1459-1473CrossRefGoogle Scholar
  5. Camps A (1996) Application of interferometric radiometry to Earth observation. Ph D Thesis, Univ. Politècnica de Catalunya,
  6. Camps A, Bará J, Corbella I, Torres F, (1997) The processing of hexagonally sampled signals with standard rectangular techniques: application to 2D large aperture synthesis interferometric radiometers. IEEE Trans Geosci Rem Sens 35: 183-190CrossRefGoogle Scholar
  7. Camps A, Corbella I, Vall-llossera M, Duffo N, Torres F, Villarino R, Enrique L, Julbe F, Font J, Julià A, Gabarró C, Etcheto J, Boutin J, Weill A, Rubio E, Caselles V, Wursteisen P, Martín-Neira M (2003) L-band sea surface emissivity: Preliminary results of the WISE-2000 campaign and its application to salinity retrieval in the SMOS mission. Radio Sci 38 (4): 8071-8079CrossRefGoogle Scholar
  8. Camps A, Font J, Vall-llossera M, Gabarró C, Corbella I, Duffo N, Torres F, Blanch S, Aguasca A, Villarino R, Enrique L, Miranda J, Arenas J, Julià A, Etcheto J, Caselles V, Weill A, Boutin J, Contardo S, Niclós R, Rivas R, Reising SC, Wursteisen P, Berger M, Martín-Neira M (2004a) The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-Band brightness temperature observations and their application to sea surface salinity retrieval. IEEE Trans Geosci Rem Sens 42 (4): 804-823CrossRefGoogle Scholar
  9. Camps A, Vall-llossera M, Duffo N, Zapata M, Corbella I, Torres F, Barrena V (2004b) Sun effects in 2D aperture synthesis radiometry imaging and their cancellation. IEEE Trans Geosci Rem Sens 42: 1161-1167CrossRefGoogle Scholar
  10. Camps A, Vall-llossera M, Villarino R, Reul N, Chapron B, Corbella I, Duffo N, Torres F, Miranda JJ, Sabia R, Monerris A, Rodriguez (2005) The emissivity of foam-covered water surface at L-band: Theoretical modeling and experimental results from the FROG 2003 field experiment. IEEE Trans Geosci Rem Sens 43: 925-937CrossRefGoogle Scholar
  11. Camps A, Vall-llossera M, Corbella I, Duffo N, Torres F (2006) Improved image reconstruction algorithms for aperture synthesis radiometers. In: IEEE Int Geosci Rem Sens Symp 2006 Proceed: 1160-1163Google Scholar
  12. Cooper NS (1988) The effect of salinity on tropical ocean models. J Phys Oceanogr 18: 697-707CrossRefGoogle Scholar
  13. Corbella I, Duffo N, Vall-llossera M, Camps A, Torres F (2004) The visibility function in interferometric aperture synthesis radiometry. IEEE T Geosci Rem Sens 42: 1677-1682CrossRefGoogle Scholar
  14. Dickson RR, Meincke J, Malmberg SA, Lee AJ (1988) The ‘Great Salinity Anomaly’ in the northern North Atlantic 1968-1982. Prog Oceanogr 20: 103-151CrossRefGoogle Scholar
  15. Font J, Lagerloef GSE, Le Vine DM, Camps A, Zanifé OZ (2004) The determination of surface salinity with the European SMOS space mission. IEEE Trans Geosci Rem Sens 42: 2196-2205CrossRefGoogle Scholar
  16. Font J, Boutin J, Reul N, Waldteufel P, Gabarró C, Zine S, Tenerelli J, Petitcolin F, Vergely JL (2006) An iterative convergence algorithm to retrieve sea surface salinity from SMOS L-band radiometric measurements. In: IEEE Int Geosci Rem Sens Symp 2006 Proceed: 1697-1701Google Scholar
  17. Gabarró C, Font J, Camps A, Vall-llossera M, Julià A (2004) A new empirical model of sea surface microwave emissivity for salinity remote sensing. Geophys Res Lett 31: L01309CrossRefGoogle Scholar
  18. Gourdeau L, Verron J, Delcroix T, Busalacchi AJ, Murtugudde R (2000) Assimilation of TOPEX/Poseidon altimetric data in a primitive equation model of the tropical Pacific Ocean during the 1992-1996 El Niño-Southern Oscillation period. J Geophys Res 105: 8473-8488CrossRefGoogle Scholar
  19. Ji M, Reynolds RW, Behringer DW (2000) Use of TOPEX/Poseidon sea level data for ocean analyses and ENSO prediction: Some early results. J Climate 13: 216-231CrossRefGoogle Scholar
  20. Klein LA, Swift CT (1977) An improved model for the dielectric constant of sea water at microwave frequencies. IEEE J Ocean Eng 2: 104-111CrossRefGoogle Scholar
  21. Koblinsky CJ, Hildebrand P, Le Vine DM, Pellerano F, Chao Y, Wilson WJ, Yueh SH, Lagerloef GSE (2003) Sea surface salinity from space: Science goals and measurement approach. Radio Sci 38: 8064-8069CrossRefGoogle Scholar
  22. Lagerloef GSE (2000) Recent progress toward satellite measurements of the global sea surface salinity field. In: Halpern D (ed) Satellites, oceanography, and society. Elsevier Oceanography Series 63, Amsterdam, pp. 309-319CrossRefGoogle Scholar
  23. Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Climate 13: 1809-1813CrossRefGoogle Scholar
  24. Le Vine DM, Zaitzeff JB, D’Sa EJ, Miller JL, Swift C, Goodberlet M (2000) Sea surface salinity: toward an operational remote-sensing system. In: Halpern D (ed) Satellites, oceanography and society. Elsevier Oceanography Series 63, Amsterdam, pp. 321-335CrossRefGoogle Scholar
  25. Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific-Ocean. J Geophys Res 96: 3343-3357CrossRefGoogle Scholar
  26. Maes C (1999) A note on the vertical scales of temperature and salinity and their signature in dynamic height in the western Pacific Ocean: Implications for data assimilation. J Geophys Res 104: 11037-11048Google Scholar
  27. Maes C, Picaut J, Belamari S (2002) Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys Res Lett 29: 2206-2216CrossRefGoogle Scholar
  28. Martín-Neira M (2004) In-orbit external calibration and validation. ESA-ESTEC TEC-ETP/2004.103/MMNGoogle Scholar
  29. Martín-Neira M, Goutoule JM (1997) A two-dimensional aperture-synthesis radiometer for soil moisture and ocean salinity observations. ESA Bull 92: 95-104Google Scholar
  30. Mignot J, Frankignoul C (2003) On the interannual variability of surface salinity in the Atlantic. Clim Dynam 20: 555-565Google Scholar
  31. Miller J, Goodberlet MA, Zaitzeff J (1996) Airborne salinity mapper makes debut in coastal zone. EOS Trans AGU 79: 173-177CrossRefGoogle Scholar
  32. Murtugudde R, Busalacchi AJ (1998) Salinity effects in a tropical ocean model. J Geophys Res 103: 3283-3300CrossRefGoogle Scholar
  33. Reul N, Chapron B (2003) A model of sea-foam thickness distribution for passive microwave remote sensing applications. J Geophys Res 108: 3321-3331CrossRefGoogle Scholar
  34. Ruf CS, Swift CT, Tanner AB Le Vine DM (1988) Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Trans Geosci Rem Sens 26: 597- 611CrossRefGoogle Scholar
  35. Sabia R, Camps A, Reul N, Vall-llossera M, Miranda J (2005) Synergetic aspects and auxiliary data concepts for Sea Surface Salinity measurements from space. Final Report WP1400 - Towards best SSS Level 2 products, ESA ESTEC ITT 1-4505/03/NL/CbGoogle Scholar
  36. Silvestrin P, Berger M, Kerr Y, Font J (2001) ESA’s second Earth Explorer opportunity mission: The Soil Moisture and Ocean Salinity mission - SMOS. IEEE Geosci Remote S Newsl 118: 11-14Google Scholar
  37. Skou N, Hoffman-Bang D (2005) L-band radiometers measuring salinity from space: atmospheric propagation effects. IEEE Trans Geosci Rem Sens 43: 2210-2217CrossRefGoogle Scholar
  38. Swift CT, McIntosh RE (1983) Considerations for microwave remote sensing of ocean-surface salinity. IEEE T Geosci Elect 21: 480-491CrossRefGoogle Scholar
  39. Troccoli A, Balmaseda MA, Segschneider J, Vialard J, Anderson DLT, Haines K, Stockdale T, Vitart F, Fox AD (2002) Salinity adjustments in the presence of temperature data assimilation. Mon Weather Rev 130: 89-102CrossRefGoogle Scholar
  40. Vossepoel FC, Burgers G, van Leeuwen PJ (2002) Effects of correcting salinity with altimeter measurements in an equatorial Pacific Ocean model. J Geophys Res 107: 8001-8010CrossRefGoogle Scholar
  41. Yueh SH, West R, Wilson WJ, Li FK, Njoku EG, Rahmat-Samii Y (2001) Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Trans Geosci Rem Sens 39: 1049-106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • J. Font
    • 1
  • A. Camps
    • 2
  • J. Ballabrera-Poy
    • 1
  1. 1.Department Physical OceanographyInstitute of Marine SciencesSpain
  2. 2.Department of Signal Theory and CommunicationsPolytechnic University of CataloniaSpain

Personalised recommendations