Advertisement

The Tumor Microenvironment as a Model for Tissue-Specific Rejection

  • Silvia Selleri
  • Sara Deola
  • Cristiano Rumio
  • Francesco M. Marincola
Part of the The Tumor Microenvironment book series (TTME, volume 1)

Since the discovery in cancer patients of tumor infiltrating and circulating lymphocytes that can recognize and kill autologous cancer cells, research have been perplexed by the paradoxical coexistence in the same organism of effector immune responses and their targets. This observation suggests that while the afferent arm of the immune response can properly exert its cognitive functions, the efferent arm displays insufficient effector activity.

Two main categories of explanations may be hypothesized: either the immune system of cancer patients is systemically hampered by cancer-specific immune tolerance or a general status of immune suppression, or the cross talk between tumor and immune cells is modulated by adaptive changes of tumor cells that may escape recognition by masking or loosing the target antigens, by providing insufficient costimulation for T cell activation or producing immune-modulatory factors.

In this chapter, we will present and discuss the present understanding of the relationship between immune and cancer cells in the context of the tumor microenvironment. Far from presenting a comprehensive explanation, our goal is to offer an update of the current status and foster interest in the pursue of studies directed at the ex vivo analysis of human samples that may spark the identification of novel hypotheses in the frame of human reality.

Keywords

Tumor microenvironment inflammation immune rejection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matzinger, P. Danger model of immunity. Scand J Immunol, 54: 2–3, 2001.PubMedGoogle Scholar
  2. 2.
    Rehermann, B. and Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol, 5: 215–229, 2005.PubMedGoogle Scholar
  3. 3.
    Wolfel, T., Klehmann, E., Muller, C., Schutt, K. H., Meyer zum Buschenfelde, K. H., and Knuth, A. Lysis of human melanoma cells by autologous cytolytic T cell clones. Identification of human histocompatibility leukocyte antigen A2 as a restriction element for three different antigens. J Exp Med, 170: 797–810, 1989.Google Scholar
  4. 4.
    Marincola, F. M., Rivoltini, L., Salgaller, M. L., Player, M., and Rosenberg, S. A. Differential anti-MART-1/MelanA CTL activity in peripheral blood of HLA-A2 melanoma patients in comparison to healthy donors: evidence for in vivo priming by tumor cells. J Immunother, 19: 266–277, 1996.CrossRefGoogle Scholar
  5. 5.
    Mantovani, A., Romero, P., Palucka, A. K., and Marincola, F. M. Tumor immunity: effector response to tumor and the influence of the microenvironment. Lancet, in press, 2006.Google Scholar
  6. 6.
    Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z., and Hanahan, D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2: 737–744, 2000.PubMedGoogle Scholar
  7. 7.
    Coussens, L. M. and Werb, Z. Inflammation and cancer. Nature, 420: 860–867, 2002.PubMedGoogle Scholar
  8. 8.
    Hanahan, D., Lanzavecchia, A., and Mihich, E. Fourteenth Annual Pezcoller Symposium: the novel dichotomy of immune interactions with tumors. Cancer Res, 63: 3005–3008, 2003.PubMedGoogle Scholar
  9. 9.
    De Visser, K. E., Korets, L. V., and Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7: 411–423, 2005.PubMedGoogle Scholar
  10. 10.
    Balkwill, F., Charles, K. A., and Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7: 211–217, 2005.PubMedGoogle Scholar
  11. 11.
    Mantovani, A. Cancer: inflammation by remote control. Nature, 435: 752–753, 2005.PubMedGoogle Scholar
  12. 12.
    Kuper, H., Adami, H. O., and Trichopoulos, D. Infections as a major preventable cause of human cancer. J Intern Med, 248: 171–183, 2000.PubMedGoogle Scholar
  13. 13.
    Balkwill, F. and Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 357: 539–545, 2001.PubMedGoogle Scholar
  14. 14.
    Young, L. S. and Murray, P. G. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene, 22: 5108–5121, 2003.PubMedGoogle Scholar
  15. 15.
    Block, T. M., Mehta, A. S., Fimmel, C. J., and Jordan, R. Molecular viral oncology of hepatocellular carcinoma. Oncogene, 22: 5093–5107, 2003.PubMedGoogle Scholar
  16. 16.
    Green, M. Management of Epstein-Barr virus-induced post-tranplant lymphoproliferative disease in recipients of solid organ transplanation. Am J Transplant, 1: 103–108, 2001.PubMedGoogle Scholar
  17. 17.
    Heslop, H. E. and Rooney, C. M. Adoptive cellular immunotherapy for EBV lymphoproliferative disease. Immunol Rev, 157: 217–222, 1997.PubMedGoogle Scholar
  18. 18.
    Khanna, R., Bell, S., Sherritt, M., Galbraith, A., Burrows, S. R., Rafter, L., Clarke, B., Slaughter, R., Falk, M. C., Douglass, J., Williams, T., Elliott, S. L., and Moss, D. J. Activation and adoptive transfer of Epsten-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA, 96: 10391–10396, 1999.PubMedGoogle Scholar
  19. 19.
    Haque, T., Taylor, C., Wilkie, G. M., Murad, P., Amlot, P. L., Beath, S., McKiernan, P. J., and Crawford, D. H. Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T cells. Transplantation, 72: 1399–1402, 2001.PubMedGoogle Scholar
  20. 20.
    Rooney, C. M., Roskrow, M. A., Smith, C. A., Brenner, M. K., and Heslop, H. E. Immunotherapy of Epstein-Barr virus-associated cancer. J Natl Cancer Institute Monogr, 23: 89–93, 1998.Google Scholar
  21. 21.
    Gottschalk, S., Heslop, H. E., and Rooney, C. M. Treatment of Epstein-Barr virus-associated malignancies with specific T cells. Adv Cancer Res, 84: 175–201, 2002.PubMedGoogle Scholar
  22. 22.
    Chua, D., Huang, J., Zheng, B., Lau, S. Y., Luk, W., Kwong, D. L., Sham, J. S., Moss, D., Yuen, K. Y., Im, S. W., and Ng, M. H. Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int J Cancer, 94: 73–80, 2001.PubMedGoogle Scholar
  23. 23.
    Straathof, K. C., Bollard, C. M., Popat, U., Huls, M. H., Lopez, T., Morriss, M. C., Gresik, M. V., Gee, A. P., Russell, H. V., Brenner, M. K., Rooney, C. M., and Heslop, H. E. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus–specific T lymphocytes. Blood, 105: 1898–1904, 2005.PubMedGoogle Scholar
  24. 24.
    Dunn, G. P., Old, L. J., and Schreiber, R. D. The three Es of cancer immunoediting. Annu Rev Immunol, 22: 329–360, 2004.PubMedGoogle Scholar
  25. 25.
    Motola-Kuba, D., Zamora-Valdes, D., Uribe, M., and Mendez-Sanchez, N. Hepatocellular carcinoma. An overview. Ann Hepatol, 5: 16–24, 2006.PubMedGoogle Scholar
  26. 26.
    Minev, B. R. Melanoma vaccines. Semin Oncol, 29: 479–493, 2002.PubMedGoogle Scholar
  27. 27.
    Parmiani, G., Castelli, C., Dalerba, P., Mortarini, R., Rivoltini, L., Marincola, F. M., and Anichini, A. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst, 94: 805–818, 2002.PubMedGoogle Scholar
  28. 28.
    Parmiani, G., Castelli, C., Rivoltini, L., Casati, C., Tully, G. A., Novellino, L., Patuzzo, A., Tosi, D., Anichini, A., and Santinami, M. Immunotherapy of melanoma. Sem Cancer Biol, 13: 391–400, 2003.Google Scholar
  29. 29.
    Boon, T. and Van Der, B. P. Human tumor antigens recognized by T lymphocytes. J Exp Med, 183: 725–729, 1996.PubMedGoogle Scholar
  30. 30.
    Old, L. J. and Chen, Y. T. New Paths in Human Cancer Serology. J Exp Med, 187: 1163–1167, 1998.PubMedGoogle Scholar
  31. 31.
    Monsurro’, V., Wang, E., Panelli, M. C., Nagorsen, D., Jin, P., Smith, K., Ngalame, Y., Even, J., and Marincola, F. M. Active-specific immunization against cancer: is the problem at the receiving end? Sem Cancer Biol, 13: 473–480, 2003.Google Scholar
  32. 32.
    Abrams, J. S., Rayner, A. A., Wiernik, P. H., Parkinson, D. R., Eisenberger, M., Aronson, F. R., Gucalp, R., Atkins, M. B., and Hawkins, M. J. High-dose recombinant interleukin-2 alone: a regimen with limited activity in the treatment of advanced renal cell carcinoma. J Natl Cancer Inst, 82: 1202–1206, 1990.PubMedGoogle Scholar
  33. 33.
    Atkins, M. B., Regan, M., and McDermott, D. Update on the role of interleukin 2 and other cytokines in the treatment of patients with stage IV renal carcinoma. Clin Cancer Res, 10: 6342S–6346S, 2004.PubMedGoogle Scholar
  34. 34.
    Hicks, A. M., Riedlinger, G., Willingham, M. C., Alexander-Miller, M. A., von Kap-Herr, C., Pettenati, M. J., Sanders, A. M., Weir, H. M., Du, E., Kim, J., Simpson, A. J. G., Old, L. J., and Cui, Z. Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA, 103: 7753–7758, 2006.PubMedGoogle Scholar
  35. 35.
    Boon, T., Cerottini, J.-C., Van den Eynde, B., van der Bruggen, P., and Van Pel, A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol, 12: 337–365, 1994.PubMedGoogle Scholar
  36. 36.
    Marincola, F. M. A balanced review of the status of T cell-based therapy against cancer. J Transl Med, 3: 16, 2005.Google Scholar
  37. 37.
    Lodish, H. F. Should cell biologists study human disease? ASCB Newsletter, 27: 2–4, 2004.Google Scholar
  38. 38.
    Mager, D. L. Bacteria and cancer: cause, coincidence or cure? J Transl Med, 4: 14, 2006.Google Scholar
  39. 39.
    Boland, C. R., Luciani, M. G., Gasche, C., and Goel, A. Infection, inflammation, and gastrointestinal cancer. Gut, 54: 1321–1331, 2005.PubMedGoogle Scholar
  40. 40.
    Chan, H. L. and Sung, J. J. Hepatocellular carcinoma and hepatitis B virus. Semin Liver Dis, 26: 153–161, 2006.PubMedGoogle Scholar
  41. 41.
    Levrero, M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene, 25: 3834–3847, 2006.PubMedGoogle Scholar
  42. 42.
    Bertout, J. and Thomas-Tikhonenko, A. Infection & neoplastic growth 101: the required reading for microbial pathogens aspiring to cause cancer. Cancer Treat Res, 130: 167–197, 2006.PubMedGoogle Scholar
  43. 43.
    Peloponese, J. M., Yeung, M. L., and Jeang, K. T. Modulation of nuclear factor-kappaB by human T cell leukemia virus type 1 Tax protein: implications for oncogenesis and inflammation. Immunol Res, 34: 1–12, 2006.PubMedGoogle Scholar
  44. 44.
    Marincola, F. M., Jaffe, E. M., Hicklin, D. J., and Ferrone, S. Escape of human solid tumors from T cell recognition: molecular mechanisms and functional significance. Adv Immunol, 74: 181–273, 2000.PubMedGoogle Scholar
  45. 45.
    Marincola, F. M., Wang, E., Herlyn, M., Seliger, B., and Ferrone, S. Tumors as elusive targets of T cell-directed immunotherapy. Trends Immunol, 24: 334–341, 2003.Google Scholar
  46. 46.
    Monsurro’, V., Wang, E., Yamano, Y., Migueles, S. A., Panelli, M. C., Smith, K., Nagorsen, D., Connors, M., Jacobson, S., and Marincola, F. M. Quiescent phenotype of tumor-specific CD8+ T cells following immunization. Blood, 104: 1970–1978, 2004.Google Scholar
  47. 47.
    Malmberg, K. J. Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother, 53: 879–892, 2004.PubMedGoogle Scholar
  48. 48.
    Overwijk, W. W. Breaking tolerance in cancer immunotherapy: time to ACT. Curr Opin Immunol, 17: 187–194, 2005.PubMedGoogle Scholar
  49. 49.
    Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., Baehner, F. L., Walker, M. G., Watson, D., Park, T., Hiller, W., Fisher, E. R., Wickerham, D. L., Bryant, J., and Wolmark, N. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med, 351: 2817–2826, 2004.PubMedGoogle Scholar
  50. 50.
    Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. Macrophage polarization: tumor-associated macrophage as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 23: 549–555, 2002.PubMedGoogle Scholar
  51. 51.
    Gordon, S. Alternative activation of macrophages. Nature Reviews, 3: 23–35, 2003.PubMedGoogle Scholar
  52. 52.
    Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol, 25: 677–686, 2004.PubMedGoogle Scholar
  53. 53.
    Mantovani, A., Sica, A., and Locati, M. Macrophage polarization comes of age. Immunity, 23: 344–346, 2005.PubMedGoogle Scholar
  54. 54.
    Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., Graf, T., Pollard, J. W., Segall, J., and Condeelis, J. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res, 64: 7022–7029, 2004.PubMedGoogle Scholar
  55. 55.
    De Palma, M., Venneri, M. A., Galli, R., Sergi, L. S., Politi, L. S., Sampaolesi, M., and Naldini, L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8: 211–226, 2005.PubMedGoogle Scholar
  56. 56.
    Albini, A., Tosetti, F., Benelli, R., and Noonan, D. M. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res, 65: 10637–10641, 2005.PubMedGoogle Scholar
  57. 57.
    Nakao, S., Kuwano, T., Tsutsumi-Miyahara, C., Ueda, S., Kimura, Y. N., Hamano, S., Sonoda, K. H., Saijo, Y., Nukiwa, T., Strieter, R. M., Ishibashi, T., Kuwano, M., and Ono, M. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1beta-induced neovascularization and tumor growth. J Clin Invest, 115: 2979–2991, 2005.PubMedGoogle Scholar
  58. 58.
    Wynn, T. A. Fibrotic disease and the T(H) 1/T(H) 2 paradigm. Nat Rev Immunol, 4: 583–594, 2004.PubMedGoogle Scholar
  59. 59.
    Panelli, M. C., Wang, E., Phan, G., Puhlman, M., Miller, L., Ohnmacht, G. A., Klein, H., and Marincola, F. M. Genetic profiling of peripheral mononuclear cells and melanoma metastases in response to systemic interleukin-2 administration. Genome Biol, 3: RESEARCH0035, 2002.Google Scholar
  60. 60.
    Mocellin, S., Panelli, M. C., Wang, E., Nagorsen, D., and Marincola, F. M. The dual role of IL-10. Trends Immunol, 24: 36–43, 2002.Google Scholar
  61. 61.
    Panelli, M. C., Stashower, M., Slade, H. B., Smith, K., Norwood, C., Abati, A., Fetsch, P. A., Filie, A., Walters, S. A., Astry, C., Arico, E., Zhao, Y., Selleri, S., Wang, E., and Marincola, F. M. Sequential gene profiling of basal cell carcinomas treated with Imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol, 8: R8, 2006.Google Scholar
  62. 62.
    Ramakrishna, V., Vasilakos, J. P., Tario, J. D., Jr., Berger, M. A., Wallace, P. K., and Keler, T. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells. J Transl Med, 5: 5, 2007.Google Scholar
  63. 63.
    Banchereau, J. and Steinman, R. M. Dendritic cells and the control of immunity. Nature, 392: 245–252, 1998.PubMedGoogle Scholar
  64. 64.
    Yamazaki, S., Iyoda, T., Tarbell, K., Olson, K., Velinzon, K., Inaba, K., and Steinman, R. M. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med, 198: 235–247, 2003.PubMedGoogle Scholar
  65. 65.
    Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., Kavanaugh, D., and Carbone, D. P. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells [published erratum appears in Nat Med 2(11) (Nov): 1267, 1996]. Nat Med, 2: 1096–1103, 1996.PubMedGoogle Scholar
  66. 66.
    Roncarolo, M. G., Levings, M. K., and Traversari, C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med, 193: F5–F9, 2001.PubMedGoogle Scholar
  67. 67.
    Chomarat, P., Banchereau, J., Davoust, J., and Palucka, A. K. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol, 1: 510–514, 2000.PubMedGoogle Scholar
  68. 68.
    Vlad, A. M., Kettel, J. C., Alajez, N. M., Carlos, C. A., and Finn, O. J. MUC1 immunobiology: from discovery to clinical applications. Adv Immunol, 82: 249–293, 2004.PubMedGoogle Scholar
  69. 69.
    Taieb, J., Chaput, N., Menard, C., Apetoh, L., Ullrich, E., Bonmort, M., Pequignot, M., Casares, N., Terme, M., Flament, C., Opolon, P., Lecluse, Y., Metivier, D., Tomasello, E., Vivier, E., Ghiringhelli, F., Martin, F., Klatzmann, D., Poynard, T., Tursz, T., Raposo, G., Yagita, H., Ryffel, B., Kroemer, G., and Zitvogel, L. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med, 12: 214–219, 2006.PubMedGoogle Scholar
  70. 70.
    Dubsky, P., Ueno, H., Piqueras, B., Connolly, J., Banchereau, J., and Palucka, A. K. Human dendritic cell subsets for vaccination. J Clin Immunol, 25: 551–572, 2005.PubMedGoogle Scholar
  71. 71.
    Tanaka, F., Yamaguchi, H., Haraguchi, N., Mashino, K., Ohta, M., Inoue, H., and Mori, M. Efficient induction of specific cytotoxic T lymphocytes to tumor rejection peptide using functional matured 2 day-cultured dendritic cells derived from human monocytes. Int J Oncol, 29: 1263–1268, 2006.PubMedGoogle Scholar
  72. 72.
    Houtenbos, I., Westers, T. M., Ossenkoppele, G. J., and van de Loosdrecht, A. A. Feasibility of clinical dendritic cell vaccination in acute myeloid leukemia. Immunobiology, 211: 677–685, 2006.PubMedGoogle Scholar
  73. 73.
    Burgdorf, S. K., Fischer, A., Claesson, M. H., Kirkin, A. F., Dzhandzhugazyan, K. N., and Rosenberg, J. Vaccination with melanoma lysate-pulsed dendritic cells, of patients with advanced colorectal carcinoma: report from a phase I study. J Exp Clin Cancer Res, 25: 201–206, 2006.PubMedGoogle Scholar
  74. 74.
    Hallett, W. H. and Murphy, W. J. Natural killer cells: biology and clinical use in cancer therapy. Cell Mol Immunol, 1: 12–21, 2004.PubMedGoogle Scholar
  75. 75.
    Parham, P. Immunogenetics of killer-cell immunoglobulin-like receptors. Tissue Antigens, 62: 194–200, 2003.PubMedGoogle Scholar
  76. 76.
    Boles, K. S., Stepp, S. E., Bennett, M., Kumar, V., and Mathew, P. A. 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol Rev, 181: 234–249, 2001.PubMedGoogle Scholar
  77. 77.
    Bauer, S., Groh, V., Wu, J., Steinle, A., Phillips, J. H., Lanier, L. L., and Spies, T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science, 285: 727–729, 1999.PubMedGoogle Scholar
  78. 78.
    Kubin, M., Cassiano, L., Chalupny, J., Chin, W., Cosman, D., Fanslow, W., Mullberg, J., Rousseau, A. M., Ulrich, D., and Armitage, R. ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. Eur J Immunol, 31: 1428–1437, 2001.PubMedGoogle Scholar
  79. 79.
    Chalupny, N. J., Sutherland, C. L., Lawrence, W. A., Rein-Weston, A., and Cosman, D. ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun, 305: 129–135, 2003.PubMedGoogle Scholar
  80. 80.
    Boles, K. S., Stepp, S. E., Bennett, M., Kumar, V., and Mathew, P. A. 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol Rev, 181: 234–249, 2001.PubMedGoogle Scholar
  81. 81.
    Gonzalez, S., Groh, V., and Spies, T. Immunobiology of human NKG2D and its ligands. Curr Top.Microbiol Immunol, 298: 121–138, 2006.Google Scholar
  82. 82.
    Chang, C. C. and Ferrone, S. NK cell activating ligands on human malignant cells: molecular and functional defects and potential clinical relevance. Semin Cancer Biol, 16: 383–392, 2006.PubMedGoogle Scholar
  83. 5.
    Torres, A., Storey, L., Anders, M., Miller, R. L., Bulbulian, B. J., Jin, J., Raghavan, S., Lee, J., Slade, H. B., and Birmachu, W. Immune-mediated changes in actinic Keratosis following topical treatment with Imiquimod 5% cream. J Transl Med, 5: 7, 2007.Google Scholar
  84. 84.
    Boon, T., Coulie, P. G., and Van den Eynde, B. Tumor antigens recognized by T cells. Immunol Today, 18: 267–268, 1997.PubMedGoogle Scholar
  85. 85.
    Boon, T., Gajewski, T. F., and Coulie, P. G. From defined human tumor antigens to effective immunization? Immunol Today, 16: 334–336, 1995.PubMedGoogle Scholar
  86. 86.
    Rosenberg, S. A., Yang, J. C., Schwartzentruber, D., Hwu, P., Marincola, F. M., Topalian, S. L., Restifo, N. P., Dufour, E., Schwartzberg, L., Spiess, P., Wunderlich, J., Parkhurst, M. R., Kawakami, Y., Seipp, C., Einhorn, J. H., and White, D. Immunologic and therapeutic evaluation of a synthetic tumor associated peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med, 4: 321–327, 1998.PubMedGoogle Scholar
  87. 87.
    Lee, K.-H., Wang, E., Nielsen, M.-B., Wunderlich, J., Migueles.S., Connors, M., Steinberg, S. M., Rosenberg, S. A., and Marincola, F. M. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol, 163: 6292–6300, 1999.Google Scholar
  88. 88.
    Slingluff, C. L., Jr. and Speiser, D. E. Progress and controversies in developing cancer vaccines. J Transl Med, 3: 18, 2005.Google Scholar
  89. 89.
    Panelli, M. C., Riker, A., Kammula, U. S., Lee, K.-H., Wang, E., Rosenberg, S. A., and Marincola, F. M. Expansion of Tumor/T cell pairs from Fine Needle Aspirates (FNA) of Melanoma Metastases. J Immunol, 164: 495–504, 2000.PubMedGoogle Scholar
  90. 90.
    Kammula, U. S., Lee, K.-H., Riker, A., Wang, E., Ohnmacht, G. A., Rosenberg, S. A., and Marincola, F. M. Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J Immunol, 163: 6867–6879, 1999.PubMedGoogle Scholar
  91. 91.
    Altman, J. D., Moss, P. H., Goulder, P. R., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., McMichael, A. J., and Davis, M. M. Phenotypic analysis of antigen-specific T lymphocytes [published erratum appears in Science 1998 Jun 19;280(5371):1821]. Science, 274: 94–96, 1996.PubMedGoogle Scholar
  92. 92.
    Cesana, G. C., DeRaffele, G., Cohen, S., Moroziewicz, D., Mitcham, J., Stoutenburg, J., Cheung, K., Hesdorffer, C., Kim-Schulze, S., and Kaufman, H. L. Characterization of CD4+ CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol, 24: 1169–1177, 2006.PubMedGoogle Scholar
  93. 93.
    Woo, E. Y., Yeh, H., Chu, C. S., Schlienger, K., Carroll, R. G., Riley, J. L., Kaiser, L. R., and June, C. H. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol, 168: 4272–4276, 2002.PubMedGoogle Scholar
  94. 94.
    Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J. R., Zhang, L., Burow, M., Zhu, Y., Wei, S., Kryczek, I., Daniel, B., Gordon, A., Myers, L., Lackner, A., Disis, M. L., Knutson, K. L., Chen, L., and Zou, W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 10: 942–949, 2004.PubMedGoogle Scholar
  95. 95.
    Badoual, C., Hans, S., Rodriguez, J., Peyrard, S., Klein, C., Agueznay, N. H., Mosseri, V., Laccourreye, O., Bruneval, P., Fridman, W. H., Brasnu, D. F., and Tartour, E. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res, 12: 465–472, 2006.PubMedGoogle Scholar
  96. 96.
    Albers, A. E., Ferris, R. L., Kim, G. G., Chikamatsu, K., Deleo, A. B., and Whiteside, T. L. Immune responses to p53 in patients with cancer: enrichment in tetramer+ p53 peptide-specific T cells and regulatory T cells at tumor sites. Cancer Immunol Immunother, 54: 1072–1081, 2005.PubMedGoogle Scholar
  97. 97.
    Badoual, C., Hans, S., Rodriguez, J., Peyrard, S., Klein, C., Agueznay, N. H., Mosseri, V., Laccourreye, O., Bruneval, P., Fridman, W. H., Brasnu, D. F., and Tartour, E. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res, 12: 465–472, 2006.PubMedGoogle Scholar
  98. 98.
    Yamaguchi, T. and Sakaguchi, S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol, 2005.Google Scholar
  99. 99.
    Ghiringhelli, F., Puig, P. E., Roux, S., Parcellier, A., Schmitt, E., Solary, E., Kroemer, G., Martin, F., Chauffert, B., and Zitvogel, L. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+ CD25+ regulatory T cell proliferation. J Exp Med, 202: 919–929, 2005.PubMedGoogle Scholar
  100. 100.
    Liyanage, U. K., Moore, T. T., Joo, H. G., Tanaka, Y., Herrmann, V., Doherty, G., Drebin, J. A., Strasberg, S. M., Eberlein, T. J., Goedegebuure, P. S., and Linehan, D. C. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol, 169: 2756–2761, 2002.PubMedGoogle Scholar
  101. 101.
    Jin, P. and Wang, E. Polymorphism in clinical immunology. From HLA typing to immunogenetic profiling. J Transl Med, 1: 8, 2003.Google Scholar
  102. 102.
    Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer, 5: 263–274, 2005.PubMedGoogle Scholar
  103. 103.
    Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., Freeman, G. J., and Ahmed, R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439: 682–687, 2006.PubMedGoogle Scholar
  104. 104.
    Echchakir, H., Bagot, M., Dorothee, G., Martinvalet, D., Le Gouvello, S., Boumsell, L., Chouaib, S., Bensussan, A., and Mami-Chouaib, F. Cutaneous T cell lymphoma reactive CD4+ cytotoxic T lymphocyte clones display a Th1 cytokine profile and use a fas-independent pathway for specific tumor cell lysis. J Invest Dermatol, 115: 74–80, 2000.PubMedGoogle Scholar
  105. 105.
    Schattner, E. J., Mascarenhas, J., Bishop, J., Yoo, D. H., Chadburn, A., Crow, M. K., and Friedman, S. M. CD4+ T-cell induction of Fas-mediated apoptosis in Burkitt’s lymphoma B cells. Blood, 88: 1375–1382, 1996.PubMedGoogle Scholar
  106. 106.
    Thomas, W. D. and Hersey, P. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol, 161: 2195–2200, 1998.PubMedGoogle Scholar
  107. 107.
    Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., Old, L. J., and Schreiber, R. D. IFN-g and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 410: 1107–1111, 2001.PubMedGoogle Scholar
  108. 108.
    Pages, F., Berger, A., Camus, M., Sanchez-Cabo, F., Costes, A., Molidor, R., Mlecnik, B., Kirilovsky, A., Nilsson, M., Damotte, D., Meatchi, T., Bruneval, P., Cugnenc, P. H., Trajanoski, Z., Fridman, W. H., and Galon, J. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med, 353: 2654–2666, 2005.PubMedGoogle Scholar
  109. 109.
    Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoue, F., Bruneval, P., Cugnenc, P. H., Trajanoski, Z., Fridman, W. H., and Pages, F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313: 1960–1964, 2006.PubMedGoogle Scholar
  110. 110.
    Cianchi, F., Messerini, L., Palomba, A., Boddi, V., Perigli, G., Pucciani, F., Bechi, P., and Cortesini, C. Character of the invasive margin in colorectal cancer: does it improve prognostic information of Dukes staging? Dis Colon Rectum, 40: 1170–1175, 1997.PubMedGoogle Scholar
  111. 111.
    Bryne, M., Boysen, M., Alfsen, C. G., Abeler, V. M., Sudbo, J., Nesland, J. M., Kristensen, G. B., Piffko, J., and Bankfalvi, A. The invasive front of carcinomas. The most important area for tumour prognosis? Anticancer Res, 18: 4757–4764, 1998.Google Scholar
  112. 112.
    Klintrup, K., Makinen, J. M., Kauppila, S., Vare, P. O., Melkko, J., Tuominen, H., Tuppurainen, K., Makela, J., Karttunen, T. J., and Makinen, M. J. Inflammation and prognosis in colorectal cancer. Eur J Cancer, 41: 2645–2654, 2005.PubMedGoogle Scholar
  113. 113.
    Wang, E., Miller, L. D., Ohnmacht, G. A., Mocellin, S., Petersen, D., Zhao, Y., Simon, R., Powell, J. I., Asaki, E., Alexander, H. R., Duray, P. H., Herlyn, M., Restifo, N. P., Liu, E. T., Rosenberg, S. A., and Marincola, F. M. Prospective molecular profiling of subcutaneous melanoma metastases suggests classifiers of immune responsiveness. Cancer Res, 62: 3581–3586, 2002.PubMedGoogle Scholar
  114. 114.
    Wang, E. and Marincola, F. M. A natural history of melanoma: serial gene expression analysis. Immunol Today, 21: 619–623, 2000.PubMedGoogle Scholar
  115. 115.
    Zitvogel, L., Tesniere, A., and Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol, 6: 715–727, 2006.PubMedGoogle Scholar
  116. 116.
    Mocellin, S., Wang, E., and Marincola, F. M. Cytokine and immune response in the tumor microenvironment. J Immunother, 24: 392–407, 2001.Google Scholar
  117. 117.
    Mocellin, S., Panelli, M., Wang, E., Rossi, C. R., Pilati, P., Nitti, D., Lise, M., and Marincola, F. M. IL-10 stimulatory effects on human NK cells explored by gene profile analysis. Genes Immun, 5: 621–630, 2004.PubMedGoogle Scholar
  118. 118.
    Singh, S., Ross, S. R., Acena, M., Rowley, D. A., and Schreiber, H. Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J Exp Med, 175: 139–146, 1992.PubMedGoogle Scholar
  119. 119.
    Ochsenbein, A. F., Klenerman, P., Karrer, U., Ludewig, B., Pericin, M., Hengartner, H., and Zinkernagel, R. M. Immune suerveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci USA, 96: 2233–2238, 1999.PubMedGoogle Scholar
  120. 120.
    Yu, P., Lee, Y., Liu, W., Chin, R. K., Wang, J., Wang, Y., Schietinger, A., Philip, M., Schreiber, H., and Fu, Y. X. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol, 5: 141–149, 2004.PubMedGoogle Scholar
  121. 121.
    Mandruzzato, S., Callegaro, A., Turcatel, G., Francescato, S., Montesco, M. C., Chiarion-Sileni, V., Mocellin, S., Rossi, C. R., Bicciato, S., Wang, E., Marincola, F. M., and Zanovello, P. A gene expression signature associated with survival in metastatic melanoma. J Transl Med, 4: 50, 2006.Google Scholar
  122. 122.
    Atkins, M. B., Regan, M., McDermott, D., Mier, J., Stanbridge, E., Youmans, A., Febbo, P., Upton, M., Lechpammer, M., and Signoretti, S. Carbonic anhydrase IX expression predicts outcome in interleukin-2 therapy of renal cancer. Clin Cancer Res, 11: 3714–3721, 2005.PubMedGoogle Scholar
  123. 123.
    Panelli, M. C., Wang, E., and Marincola, F. M. The pathway to biomarker discovery: carbonic anhydrase IX and the prediction of immune responsiveness. Clin Cancer Res, 11: 3601–3603, 2005.PubMedGoogle Scholar
  124. 124.
    Wang, E., Panelli, M. C., Zavaglia, K., Mandruzzato, S., Hu, N., Taylor, P. R., Seliger, B., Zanovello, P., Freedman, R. S., and Marincola, F. M. Melanoma-restricted genes. J Transl Med, 2: 34, 2004.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Silvia Selleri
    • 1
    • 2
  • Sara Deola
    • 1
  • Cristiano Rumio
    • 2
  • Francesco M. Marincola
    • 1
  1. 1.Immunogenetics Section, Department of Transfusion Medicine, Clinical CenterNational Institutes of HealthBethesdaUSA
  2. 2.Department of Human MorphologyUniversita' degli Studi di MilanoMilanItaly

Personalised recommendations