Comparative Biochemical Study of the Rhizosphere of Rhizophora mangle and its Associated Species Cyperus sp. in the Ciénaga de Soledad (Colombia)

  • Jorge E. Paolini
  • Luz Esther Sánchez-Arias
Part of the Tasks for Vegetation Sciences book series (TAVS, volume 43)

The present study compares the rhizosphere of Rhizophora mangle and its associated species Cyperus sp. with the adjacent non-rhizospheric soil of the mangrove forest at the Ciénaga of Soledad (Caribbean Sea-Colombia). The enzyme activities (dehydrogenase, acid and alkaline phosphatase, urease, b-glucosidase and fluorescein diacetate hydrolysis), microbial biomass carbon by substrate induced respiration, pH, electrical conductivity, water moisture, total organic carbon and nutrients (total nitrogen and phosphorus) were determined. The results showed marked differences among the rhizospheres of Rhizophora mangle, its associated species (Cyperus sp.) and the adjacent soil; suggesting a high microbial activity due to the special interaction between the Rhizophora mangle roots and its microenvironment.


rhizosphere mangrove soil enzyme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, London, p 576Google Scholar
  2. Alongi DM (1988) Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb Ecol 15:59–79CrossRefGoogle Scholar
  3. Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conser 29:331–349Google Scholar
  4. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221CrossRefGoogle Scholar
  5. Boto KG, Wellington JT (1984) Soil characteristics and nutrient status in Northern Australian mangrove forest. Estuaries 7: 61–69CrossRefGoogle Scholar
  6. Casida LEJR, Klein DA, Santoro R (1964) Soil dehydrogenase activity. Soil Sci 98:371–378CrossRefGoogle Scholar
  7. Chendrayan K, Adhya TK, Sethunathan TN (1980) Dehydrogenase and invertase activities of flooded soils. Soil Biol Biochem 12:271–273CrossRefGoogle Scholar
  8. Dick W, Tabatabai MA (1993) Significance and potential uses of soil enzymes. In: Blaine, Metting JR (eds) Soil microbial ecology. Applications in agricultural and environmental management. Marcel Dekker, New York, pp 95–127Google Scholar
  9. Dinesh R, Shome BR, Rajeshwari Shome, Bandyopadhyay AK (1998) Soil enzymes in the mangroves: activities and their relation to relevant soil properties. Curr Sci 75:510–512Google Scholar
  10. Dinesh R, Chaudhuri SG, Ganeshamurty AN, Pramanik SC (2004) Biochemical properties of soils of undisturbed and disturbed mangrove forests of South Andaman (Indian). Wetlands Ecol Manag 12:309–320CrossRefGoogle Scholar
  11. Eivazi F, Tabatabai MA (1988) Glucosidades and galactosidases in soils. Soil Biol Biochem 20:601–606CrossRefGoogle Scholar
  12. Frankenberger WT, Bingham FT (1982) Influence of salinity on soil enzyme activities. Soil Sci Soc Am J 46:1173–1177CrossRefGoogle Scholar
  13. García C, Hernández MT (1996) Influence of salinity on the biological and biochemical activity of a calciorthid soil. Plant Soil 178:255–263CrossRefGoogle Scholar
  14. García C, Hernández MT, Pascual J, Moreno J, Land M, Ros M (2000) Actividad microbiana en suelos del sureste español sometidos a procesos de degradación y desertificación. Estrategias para su rehabilitación. En: García C y Hernández MT (eds) Investigación y perspectivas de la enzimología de suelos en España. CSIC-CEBAS, Murcia, España, pp 43–92Google Scholar
  15. Holguin G, Vásquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:225–278CrossRefGoogle Scholar
  16. Jiménez JA (1994) Los manglares del Pacífico Centroamericano. Editorial Fundación UNA, Costa Rica, San José pp 336Google Scholar
  17. Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72CrossRefGoogle Scholar
  18. Kannan K, Oblisami G (1990) Influence of paper mill effluent irrigation on soil enzyme activities. Soil Biol Biochem 22:923–926CrossRefGoogle Scholar
  19. Lacerda LD, Ittekot V, Pachineelam SR (1995) Biogeochemistry of mangrove soil organic matter: a comparison between Rhizophora and Avicennia soils in South-Eastern Brazil. Estuarine Coastal Shelf Sci. 40: 713–720CrossRefGoogle Scholar
  20. Lacerda LD, Carvalho CEV, Tanizaki KF Ovalle ARC, Rezende CE (1993) The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica 25:252–257CrossRefGoogle Scholar
  21. Mongia AD, Ganeshamurthy AN (1989) Typical differences between the chemical characteristics of Rhizophora and Avicennia mangrove forest soils in South Andamans. Agrochimica 33:464–470Google Scholar
  22. McKee K, Mendelssohn I, Hester M (1988) Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans (1988). Am J Bot 75:1352–1359CrossRefGoogle Scholar
  23. Pathak H and Rao DLN (1998) Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem 30:695–702CrossRefGoogle Scholar
  24. Richards BN (1974) Introduction to soil ecosystem. Longman, London, pp 266Google Scholar
  25. Rietz DN and Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854CrossRefGoogle Scholar
  26. Riley JP, Chester R (1989) Introducción a la química marina. AGT Editor S.A., México, pp 459Google Scholar
  27. Rivera-Monroy VH, Twiley RR, Medina E, Moser EB, Botero L, Francisco AM, Bullard E (2004) Spatial variability of soil nutrients in disturbed riverine mangrove forests at different stages of regeneration in the San Juan River Estuary, Venezuela. Estuaries 27: 44–57CrossRefGoogle Scholar
  28. Ross DJ (1970) Effects of storage on dehydrogenase activities of soils. Soil Biol Biochem 2:55–61CrossRefGoogle Scholar
  29. Shinner F, Öhlonger R, Kandeler E and Margesin R (1995) Methods in soil biology. Springer, Berlin, pp 66Google Scholar
  30. Schnürer J, Roswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261PubMedGoogle Scholar
  31. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307CrossRefGoogle Scholar
  32. Tam NFY (1998) Effects of wastewater discharge on microbial population and enzyme activities in mangrove soils. Envirom Pollut 102:233–242CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Jorge E. Paolini
    • 1
  • Luz Esther Sánchez-Arias
    • 1
  1. 1.Centro de EcologíaInstituto Venezolano de Investigaciones CientíficasVenezuela

Personalised recommendations