Advertisement

Laplace, Turing and the “Imitation Game” Impossible Geometry

Randomness, Determinism and Programs in Turing’s Test
  • Giuseppe Longo

Abstract

From the physico-mathematical view point, the imitation game between man and machine, proposed by Turing in his 1950 paper for the journal “Mind”, is a game between a discreteand a continuoussystem. Turing stresses several times the Laplacian nature of his discrete-state machine, yet he tries to show the undetectability of a functional imitation, by his machine, of a system (the brain) that, in his words, is not a discrete-state machine, as it is sensitive to limit conditions. We shortly compare this tentative imitation with Turing’s mathematical modeling of morphogenesis (his 1952 paper, focusing on continuous systems, as he calls nonlinear dynamics, which are sensitive to initial conditions). On the grounds of recent knowledge about dynamical systems, we show the detectability of a Turing Machine from many dynamical processes. Turing’s hinted distinction between imitation and modeling is developed, jointly to a discussion on the repeatability of computational processes in relation to physical systems. The main references are of a physico-mathematical nature, but the analysis is purely conceptual.

Keywords

Turing Machine classical determinism dynamical systems computational and dynamical hypotheses functional analyses of cognition iteration Laplace 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Preliminary or revised versions of Longo’s articles, including the introduction to (Aceto et al., 2003), are downloadable from: http://www.di.ens.fr/users/longo or Search: Google: Giuseppe Longo.
  2. Aceto, L., Longo, G., and Victor, B., eds., 2003 The difference between sequential and concurrent computations, Special issue, Mathematical Structures in Computer Science, Cambridge University Press, 13(4–5).Google Scholar
  3. Adler, R. L., 1979, Topological entropy and equivalence of dynamical systems, American Mathematical Society.Google Scholar
  4. Alligood, K., Sauer, T., and Yorke, J., 2000, Chaos: An Introduction to Dynamical Systems, Springer, New York.Google Scholar
  5. Amadio, R. and Curien, P. L., 1998, Domains and lambda-calculi, Birkhuaser.Google Scholar
  6. Amsterdamski, S., ed., 1990, La Querelle du Déterminisme, Gallimard, Paris.Google Scholar
  7. Asperti, A. and Longo, G., 1991, Categories, Types and Structures, MIT Press.Google Scholar
  8. Bailly, F. and Longo, G., 2003, Space, time and cognition: from the standpoint of mathematics and natural sciences, in: Causality and Mind, Peruzzi, ed., Kluwer.Google Scholar
  9. Bailly, F. and Longo, G., 2003a, Incomplétude et incertitude en mathématiques et en physique, dans Il pensiero filosofico di Giulio Preti, Parrini, Scarantino, eds., Guerrini ed associati, Milano, (english partial version downloadable).Google Scholar
  10. Bailly, F. and Longo, G., 2003b, Objective and epistemic complexity in biology, Invited lecture, in: Proceedings of the International Conference on Theoretical Neurobiology, N. C. Singh ed., NBCR, New Delhi.Google Scholar
  11. Bailly, F. and Longo, G., 2004b, Causalités et symétries dans les sciences de la nature: Le continu et le discret mathématiques, dans Logique et Intéraction: Pour Une Géométrie de la Cognition, Joinet, ed., Presses de la Sorbonne.Google Scholar
  12. Bailly, F. and Longo, G., 2006, Mathématiques et sciences de la nature, La Singularité Physique du Vivant, à paraître, Hermann, Paris.Google Scholar
  13. Barendregt, H., 1984, The Lambda-Calculus: Its Syntax, Its Semantics, North-Holland, Amsterdam, The Netherlands, rev. edn.Google Scholar
  14. Berselli, L. C., Liescu, T., and Layton, W. J., 2005, Mathematics of Large Eddy Simulation of Turbulent Flows, Springer.Google Scholar
  15. Cannone, M., 2003, Harmonic analysis tools for solving Navier-Stokes equations, in Handbook of Mathematical Fluid Dynamics 3, S. Friedlander and D. Serre, eds., Elsevier.Google Scholar
  16. Church, A., 1932–1933. A set of postulates for the foundation of logic, Annals of Match. v. 33 pp. 348–349, & v. 34, pp. 839–864.Google Scholar
  17. Church, A., 1940. A formulation for the simple theory of types. J. Symp. Logic., v. 5. pp. 56–58.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Copeland, B., 2002, The Church-Turing thesis, Stanford Encyclopedia of Philosophy, Web edition http://plato.stanford.edu/entries/church-turing/#Bloopers
  19. Dahan-Delmedico, A., Chabert, J. L., and Chemla, K., 1992, Chaos et déterminisme, Seuil.Google Scholar
  20. Devaney, R. L., 1989, An Introduction to Chaotic Dynamical Systems, Addison Wesley, Reading, MA.zbMATHGoogle Scholar
  21. Enriques, F., 1935, Philosophie scientifique et empirisme logique, Actes du Congrès International de Philosophie Scientifique, Hermann, Paris.Google Scholar
  22. Fabbrichesi, R. and Leoni, F., 2005, Continuità e variazione. Leibniz, Goethe, Peirce, Wittgenstein, Mimesis, Milano.Google Scholar
  23. Frege, G., 1884, The Foundations of Arithmetic(English translation, Evanston, 1980).Google Scholar
  24. Gandy, R., 1988, The Confluence of Ideas in 1936, in: The Universal Turing Machine, Rolf Herken, ed., Oxford University Press, Oxford, pp. 55–111.Google Scholar
  25. Girard, J. Y., Lafont, Y., and Taylor, P., 1990, Proofs and Types, Cambridge University Press, Cambridge.Google Scholar
  26. Gödel, K., Nagel, E., Newman, J., and Girard, J. -Y., 1989, Le théoreme de Gödel, Seuil.Google Scholar
  27. Goubault, E., ed., 2000, Geometry in concurrency, Special issue, Mathematical Structures in Computer Science, Cambridge University Press, Cambridge10(4).Google Scholar
  28. Hilbert, D., 1899, trad françise par P. Rossier: Les fondements de la géométrie, 1971, Dunod, Paris.Google Scholar
  29. Hindley, R., Seldin, J., 1986, Introduction to combinators and lambda-calculus, London Mathematical Society.Google Scholar
  30. Howard, W., 1980, The formulas-as-types notion of construction (Manuscript written in 1969), in: To H.B. Curry: Essays in Combinatory Logic, Lambda-calculus and Formalism, Seldin and Hindley, eds., Academic Press, London.Google Scholar
  31. Krivine, J. L., 1990, Lambda-calcul: Types et Modèles, Masson, Paris.zbMATHGoogle Scholar
  32. Laskar, J., 1990, The chaotic behaviour of the solar system, Icarus 88: 266–291.CrossRefGoogle Scholar
  33. Lassègue J., 1998, Turing, Les Belles Lettres, Paris.Google Scholar
  34. Lighthill, J., 1986, The recent recognized failure of predictability in Newtonian dynamics, Proceedings of the Royal Society of London. Series A 407: 35–50.Google Scholar
  35. Longo, G., 1988, On Church’s formal theory of functions and functionals, Invited lecture, Conference on Church’s Thesis after 50 years, Zeiss (NL), June 1986, Annals of Pure and Applied Logic 40: 93–133.zbMATHCrossRefMathSciNetGoogle Scholar
  36. Longo, G., 1999a, Mathematical intelligence, infinity and machines: beyond the Gödelitis, Journal of Consciousness Studies, special issue on Cognition 6: 11–12.Google Scholar
  37. Longo, G., 1999b, The mathematical continuum, from intuition to logic, in: Naturalizing Phenomenology: Issues in Comtemporary Phenomenology and Cognitive Sciences, J. Petitot et al., eds., Stanford University Press, Stanford.Google Scholar
  38. Longo, G., 2002, ct>On the proofs of some formally unprovable propositions and Prototype Proofs in Type Theory, Invited Lecture, Types for Proofs and Programs, Durham (GB), Dec. 2000; Lecture Notes in Computer Science, Vol. 2277, Callaghan et al., eds., pp. 160–180, Springer.Google Scholar
  39. Longo, G., 2003a, Space and time in the foundations of mathematics, or some challenges in the interactions with other sciences, Invited lecture, First American Math. Soc./SMF meeting, Lyon (version française in Intellectica, n. 36–37).Google Scholar
  40. Longo, G., 2003b, The Constructed Objectivity of Mathematics and the Cognitive Subject, in: Quantum Mechanics, Mathematics, Cognition and Action, M. Mugur-Schachter, ed., KluwerGoogle Scholar
  41. Longo, G., 2005, The reasonable effectiveness of Mathematics and its Cognitive roots, In: New Interactions of Mathematics with Natural Sciences, L. Boi, ed., World Scientific.Google Scholar
  42. Nouvel, P., 2002, Modèles et métaphores dans Enquête sur le concept de modèle, P. Nouvel, ed., Presses Universitaires de France.Google Scholar
  43. Petitot, J., 1990, Note sur la querelle du déterminisme, dans La querelle du déterminisme, Amsterdamski et al., eds., Gallimard, Paris.Google Scholar
  44. Pilyugin, S. Yu., 1999, Shadowing in Dynamical Systems, Springer, Berlin.zbMATHGoogle Scholar
  45. Poincaré, H., 1890. Sur le probléme des trois corps et les équations de la dynamique, Acta Math. 13, 1–27.Google Scholar
  46. Sauer, T., 2003, Shadowing Breakdown and Large Errors in Dynamical Simulations of Physical Systems, preprint, George Mason University.Google Scholar
  47. Stewart, J., 2002, La modélisation en biologie dans Enquête sur le concept de modèle, P. Nouvel, ed., Presses Universitaires de France.Google Scholar
  48. Turing, A., 1936, On computable numbers with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society 42: 230–265.zbMATHCrossRefGoogle Scholar
  49. Turing, A., 1948, Intelligent machinery, National Physical Laboratory Report, in: Machine Intelligence 5, B. Meltzer and D. Michie, eds., 1969, Edinburgh University Press.Google Scholar
  50. Turing, A., 1950, Computing machines and intelligence, Mind 59 (Page references to its reprinted version in M. Boden, ed., Oxford University Press, 1990; traduction française et introduction dans A. Turing, J. -Y. Girard, La machine de Turing, Seuil, 1991).Google Scholar
  51. Turing, A. M., 1952, The Chemical Basis of Morphogenesis, Philo. Trans. Royal Soc., B 237: 37–72.Google Scholar
  52. van Fraassen, B., 1994, Lois et Symetries, Vrin, Paris.Google Scholar
  53. van Gelder, T., 1998, The dynamical hypothesis in cognitive sciences, target article and discussion, Behavioral and Brain Sciences 21.Google Scholar
  54. von Neumann, J. and Ulam, S., 1947, On combinations of stochastic and deterministic processes, Bulletin of AMS 53: 1120.Google Scholar
  55. Weyl, H., 1918, Das Kontinuum(trad. italiana di B. Weit, Bibliopolis, 1977).Google Scholar
  56. Weyl, H., 1927, Philosophy of Mathematics and of Natural Sciences(english translation, Princeton University Press, 1949).Google Scholar
  57. Weyl, H., 1952, Symmetry, Princeton University Press.Google Scholar
  58. Wittgenstein, L., 1980, Remarks on the Philosophy of Psychology, Vol.1, Blackwell, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Giuseppe Longo
    • 1
  1. 1.CNRS et Département d’Informatique. École Normale SupérieurePariset CREA, École PolytechniqueParis Cedex 05France

Personalised recommendations