Quantum Requirement for Oxygen Evolution in Photosystem II: New Experimental Data and Theoretical Solutions

  • Mário Fragata
  • Venkataramanaiah Viruvuru


We used a X-Ray crystallography model of the photosystem II (PSII) to perform for the first time a structure-function demonstration showing that the minimal quantum requirement for oxygen evolution, QRO2, in the PSII reaction center is eight photons/oxygen molecule evolved. The results indicate that the minimal QRO2 = 8 is not dependent on the partaking of the calculated quantum requirement between PSII and photosystem I as was often reported. The differences between the minimal QRO2 = 8 calculated in this work and the experimental QRO2's > 8 observed in various plant and algae materials (in particular QRO2 = 12.5 in isolated PSII particles) are explained by the participation of the chlorophylls PD2 or ChlD2 and the tyrosine D (in the D2 protein) in energy and electron transfer in the PSII reaction center.


D2 protein electron transfer oxygen evolution Photosystem II quantum requirement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Emerson R (1958) The quantum yield of photosynthesis. Ann Rev Plant Physiol 9:1-24.CrossRefGoogle Scholar
  2. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831-1838.PubMedCrossRefGoogle Scholar
  3. Fragata M, Viruvuru V, Dudekula S (2007) Theoretical consideration of the use of a Langmuir adsorption isotherm to describe the effect of light intensity on electron transfer in photosystem II. J Phys Chem B 111:3315-3320.PubMedCrossRefGoogle Scholar
  4. Garbers A, Reifarth F, Kurreck J, Renger G, Parak F (1998) Correlation between flexibility and electron transfer from QA−. to QB in PSII membrane fragments from spinach. Biochemistry 37:11399-11404.PubMedCrossRefGoogle Scholar
  5. Govindjee (1999) On the requirement of minimum number of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: A historical note. Photosynth Res 59:249-254.CrossRefGoogle Scholar
  6. Joliot P, Barbieri G, Chabaud R (1969) Un nouveau modèle des centres photochimiques du système II. Photochem Photobiol 10:309-329.CrossRefGoogle Scholar
  7. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution: I. A linear four step mechanism. Photochem Photobiol 11:457-475.PubMedCrossRefGoogle Scholar
  8. Kromkamp JC, Domin A, Dubinsky Z, Lehmann C, Schanz F (2001) Changes in photosynthetic properties measured by oxygen evolution and variable fluorescence in a simulated entrainment experiment with the cyanobacterium Planktothrix rubescens. Aquat Sci 63: 363-382.CrossRefGoogle Scholar
  9. Ley AC (1986) Relationships among cell chlorophyll content, photosystem II light-harvesting and the quantum yield for oxygen production in Chlorella. Photosynth Res 10:189-196.CrossRefGoogle Scholar
  10. Ley AC, Mauzerall DC (1982) Absolute absorption crosssections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta 680:95-106.CrossRefGoogle Scholar
  11. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040-1044.PubMedCrossRefGoogle Scholar
  12. Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971-982.PubMedCrossRefGoogle Scholar
  13. Rutherford AW, Boussac A, Faller P (2004) The stable tyrosyl radical in photosystem II: Why D? Biochim Biophys Acta 1655:222-230.PubMedCrossRefGoogle Scholar
  14. Schmid GH, Gaffron H (1967) Quantum requirement for photosynthesis in chlorophyll-deficient plants with unusual lamellar structures. J Gen Physiol 50: 2131-2144.PubMedCrossRefGoogle Scholar
  15. Sugiura M, Rappaport F, Brettel K, Noguchi T, Rutherford AW, Boussac A (2004) Site-directed mutagenesis of Thermosynechococcus elongatus photosystem II: The O2-evolving enzyme lacking the redox active tyrosine D. Biochemistry 43:13549-13563.PubMedCrossRefGoogle Scholar
  16. Warburg O, Negelein E (1923) Über den Einfluss der Wellenlänge auf den Energie Umsatz bei der Kohlensaure-assimilationen. Z Physik Chem Leipzig 106:191-218.Google Scholar
  17. Warthmann R, Pfennig N, Cypionka H (1993) The quantum requirement for H2 production by anoxygenic phototrophic bacteria. Appl Microbiol Biotech 39: 358-362.CrossRefGoogle Scholar
  18. Yun Y-S, Park JM (2003) Kinetic modeling of the light-dependent photosynthetic activity of the green micro-alga Chlorella vulgaris. Biotech Bioeng 83:303-311.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V. 2008

Authors and Affiliations

  • Mário Fragata
    • 1
  • Venkataramanaiah Viruvuru
    • 1
  1. 1.Département de Chimie-BiologieUniversité du Québec à Trois-RivièresQueCanada

Personalised recommendations