Structural Assessment of the Bacteriochlorophyll d Stacking in Chlorosomes from a C. tepidum Mutant with MAS NMR Spectroscopy

  • Swapna Ganapathy
  • Michael Reus
  • Aline Gomez Maqueo Chew
  • Donald A. Bryant
  • Alfred R. Holzwarth
  • Huub J. M. de Groot
Conference paper

Abstract

Magic angle spinning (MAS) solidstate NMR spectroscopy was used to investigate the stacking of bacteriochlorophylls (BChl) in the bchQRU mutant of the green sulfur bacterium C. tepidum. This mutant produces [8-Et, 12-Me] BChl d instead of the BChl c in the wild type. Using uniformly 13C enriched bchQRU chlorosomes, a 13C and 1H resonance assignment of the BChl d ring was made using two-dimensional 13C−13C homonuclear and 1H−13C heteronuclear MAS NMR dipolar correlation experiments. The aggregation shifts are largest for the 21−H3, 121−H3, 31−H, and 5-H, which are shifted upfield by −3.3, −2.6, −3.7, and −2.0 ppm, respectively. A comparison of the bchQRU chlorosomes with aggregation shifts for the wild type and chlorin models forming dense aggregates reveals parallel stacking of the [8-Et, 12-Me]BChl d, which is more dense and much more homogeneously ordered than for the BChl c in the wild type. However, the structure is less dense than for the Cd-chlorin models which lack the 31-Me.

Keywords

Chlorosomes bchQRU mutant BChl d MAS NMR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balaban TS, Holzwarth AR, Schaffner K, Boender GJ, deGroot HJM (1995) CP-MAS 13C-NMR dipolar correlation spectroscopy of 13C-enriched chlorosomes and isolated bacteriochlorophyll-c aggregates of Chlorobiumtepidum: The self-organization of pigments is the main structural feature of chlorosomes. Biochemistry 34:15259–15266.PubMedCrossRefGoogle Scholar
  2. Bennett AE, Ok JH, Griffin RG, Vega S (1992) Chemical-shift correlation spectroscopy in rotating solids - radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624–8627.CrossRefGoogle Scholar
  3. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958.CrossRefGoogle Scholar
  4. de Boer I, Matysik J, Erkelens K, Sasaki S, Miyatake T, Yagai S, Tamiaki H, Holzwarth AR, de Groot HJM (2004) MAS NMR structures of aggregated cadmium chlorins reveal molecular control of self-assembly of chlorosomal bacteriochlorophylls. J Phys Chem B 108:16556–16566.CrossRefGoogle Scholar
  5. Egawa A, Fujiwara T, Mizoguchi T, Kakitani Y, Koyama Y, Akutsu H (2007) Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc Natl Acad Sci USA 104:790–795.PubMedCrossRefGoogle Scholar
  6. Frigaard NU, Chew AGM, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: Insights into the structure,physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117.PubMedCrossRefGoogle Scholar
  7. Maresca JA, Chew AGM, Ponsati MR, Frigaard NU, Ormerod JG, Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltrans-ferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186:2558–2566.PubMedCrossRefGoogle Scholar
  8. Olson JM (1998) Chlorophyll organization and function ingreen photosynthetic bacteria. Photochem Photobiol 67:61–75.CrossRefGoogle Scholar
  9. Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45.PubMedCrossRefGoogle Scholar
  10. van Rossum BJ, Forster H, de Groot HJM (1997) High-field and high-speed CP-MAS 13C NMR heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling. J Magn Reson 124:516–519.CrossRefGoogle Scholar
  11. van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR, de Groot HJM (2001a) A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-Dand 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40:1587–1595.PubMedCrossRefGoogle Scholar
  12. van Rossum BJ, Castellani F, Rehbein K, Pauli J, Oschkinat H (2001b) Assignment of the nonexchanging protons of the alpha-spectrin SH3 domain bytwo- and three-dimensional 1H-13C solid-state magic-angle spinning NMR and comparison of solution and solid-state proton chemical shifts. Chembiochem 2:906–914.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V. 2008

Authors and Affiliations

  • Swapna Ganapathy
    • 1
  • Michael Reus
    • 2
  • Aline Gomez Maqueo Chew
    • 3
  • Donald A. Bryant
    • 3
  • Alfred R. Holzwarth
    • 2
  • Huub J. M. de Groot
    • 1
  1. 1.Leiden Institute of ChemistryGorlaeus LaboratoriesLeidenThe Netherlands
  2. 2.Max-Planck-Institut für Bioanorganische ChemieMülheim an der RuhrGermany
  3. 3.Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations