Skip to main content

The Oxidation Potential of Chl a Is the Lowest — A New Scheme for O2 Evolution in PS II

  • Conference paper
Photosynthesis. Energy from the Sun

Abstract

Oxygenic photosynthesis universally uses Chl a for P680. For water oxidation, higher oxidation potential of chlorophyll is supposed to be favorable. We found, however, Chl a had lower oxidation potential than Chls b and d. Phes a, b and d showed remarkably higher potentials than Chls. The results suggest that Phes, not Chls, might be favorable to water oxidation, although Phes has not yet been used in P680. Further, conventional scheme for water oxidation in PS II has a fundamental problem; redox potential of the Mn-complex is fixed during S-cycle. To explain the enigma, we propose a unique model for O2 evolution, where the stepwise positive shifts of oxidation potentials of the Mn-complex take place to create the great high oxidation power to oxidize water. Lower oxidation states may accept holes from P680+, but the highest oxidation state cannot do this and should utilize photon energy to attain the final state to oxidize water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Miyachi S, Kobayashi M (2001) Detection of chlorophyll d’ and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Anal Sci 17:205-208.

    Article  PubMed  CAS  Google Scholar 

  • Ashmawy FM, Mcauliffe CA, Parish RV, Tames J (1985) Water photolysis. Part 1. The photolysis of co-ordinated water in [{MnL-(H2O)}2][CLO4]2 (L = Dianion of tetradentate O2N2-donor schiff bases). A model for the manganese site in photosystem II of green plant photosynthesis. J Chem Soc Dalton Trans 1391-1397.

    Google Scholar 

  • Baldwin MJ, Pecoraro VL (1996) Energetics of proton-coupled electron transfer in high-valent Mn2(µ-O)2 systems: models for water oxidation by the oxygen-evolving complex of photosystem II. J Am Chem Soc 118:11325-11326.

    Article  CAS  Google Scholar 

  • Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Ann Rev Plant Biol 53:551-580.

    Article  CAS  Google Scholar 

  • Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochim Biophys Acta 1706:68-80.

    Article  PubMed  CAS  Google Scholar 

  • Horner O, Anxolabenere-Mallart E, Charlot M, Tchertanov L, Guilhem J, Mattioli TA, Boussac A, Girerd J (1999) A new manganese dinuclear complex with phenolate ligands and a single unsupported oxo bridge. Storage of two positive charges within less than 500 mV. Relevance to photosynthesis. Inorg Chem 38:1222-1232.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Watanabe S, Gotoh T, Koizumi H, Itoh Y, Akiyama M, Shiraiwa Y, Tsuchiya T, Miyashita H, Mimuro M, Yamashita T, Watanabe T (2005) Minor but key chlorophylls in photosystem II. Photosynth Res 84:201-207.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767:596-602.

    Article  PubMed  CAS  Google Scholar 

  • Raszewski G, Saenger W, Renger T (2005) Theory of optical spectra of photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor. Biophys J 88:986-998.

    Article  PubMed  CAS  Google Scholar 

  • Schlodder E, Cetin M, Eckert H, Schmitt F, Barber J, Telfer A (2007) Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. Biochim Biophys Acta 1767:589-595.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Kobayashi M, Sagara T (1990) Electrochemical and photoelectrochemical interpretation of the oxygen evolution process. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 1. Kluwer, Dordrecht, The Netherlands, pp 885-888.

    Chapter  Google Scholar 

  • Wild A, Ball R (1997) Photosynthetic Unit and Photosystems - History of Research and Current View. Backhuys, Leiden, The Netherlands, p 230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John F. Allen Elisabeth Gantt John H. Golbeck Barry Osmond

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V.

About this paper

Cite this paper

Kobayashi, M., Ohashi, S., Fukuyo, S., Kasahara, M., Watanabe, T. (2008). The Oxidation Potential of Chl a Is the Lowest — A New Scheme for O2 Evolution in PS II. In: Allen, J.F., Gantt, E., Golbeck, J.H., Osmond, B. (eds) Photosynthesis. Energy from the Sun. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6709-9_26

Download citation

Publish with us

Policies and ethics