Advertisement

Primary Charge Separation in PS2 Core Complexes from Synechocystis 6803: A Comparison of Femtosecond Visible/Mid-IR Pump-Probe Spectra of Wild Type and Two P680 Mutants

  • M. Di Donato
  • R. O. Cohen
  • B. A. Diner
  • J. Breton
  • R. van Grondelle
  • M. L. Groot

Abstract

Primary charge separation in PS2 core complexes from Synechocystis sp. PCC 6803 has been studied by femtosecond visible/mid-IR pumpprobe spectroscopy upon excitation at 680 nm. It is now quite well accepted that primary charge separation predominantly starts from the accessory chlorophyll BA. In order to identify spectral signatures of BA, and to better clarify the process of primary charge separation, we have compared the femto-IR pump-probe spectra of the wild type PS2 core with those of two mutants, in which the histidine residue coordinated to PB (D2-H197) has been changed to alanine or glutamine. The mutated histidine is indirectly H-bonded to BA, through a water molecule, and the mutation is expected both to perturb the vibrational properties of BA, possibly by displacing the H-bonded water molecule, and to modify the electronic properties and the charge localization on P680 +. The comparison of the time resolved spectra of wild type and mutants allowed us to propose a band assignment identifying the characteristic vibrations of BA.

Keywords

Photosystem II energy transfer charge separation ultrafast spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camara-Artigas A, Brune D, Allen JP (2002) Interactions between lipids and bacterial reaction centers deter- mined by protein crystallography. Proc Natl Acad Sci USA 99:11055-11060.PubMedCrossRefGoogle Scholar
  2. DiDonato M, vanGrondelle R, vanStokkum IHM, Groot ML (2007) Excitation energy transfer in the photosystem II core antenna complex CP43 studied by femtosec- ond visible/visible and visible/mid-IR pump-probe spectroscopy. J Phys Chem B 111:7345-7352.CrossRefGoogle Scholar
  3. Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ, Chisholm DA (2001) Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synecocystis PCC6803: Sites of primary charge separation and cation and triplet stabilization. Biochemistry 40:9265-9281.PubMedCrossRefGoogle Scholar
  4. Groot ML, Breton J, vanWilderen LJGW, Dekker JP, vanGron- delle R (2004) Femtosecond Visible/Visible and Visible/ Mid-IR pump-probe study of the photosystem II core antenna complex CP47. J Phys Chem B 108:8001-8006.CrossRefGoogle Scholar
  5. Groot ML, Pawlowicz NP, van Wilderen LJGW, Breton J, van Stokkum IHM, van Grondelle R (2005) Initial donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond Mid-IR spectroscopy. PNAS, 102:13087-13092.PubMedCrossRefGoogle Scholar
  6. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature, 438:1040-1044.PubMedCrossRefGoogle Scholar
  7. Noguchi T, Tomo T, Kato C (2001) Triplet formation on a monomeric chlorophyll in the photosystem II reaction center as studied by time-resolved infrared spectroscopy. Biochemistry 40:2176-2185.PubMedCrossRefGoogle Scholar
  8. van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time resolved spectra. Biochim Biophys Acta 1657:82-104.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V. 2008

Authors and Affiliations

  • M. Di Donato
    • 1
  • R. O. Cohen
    • 2
  • B. A. Diner
    • 2
  • J. Breton
    • 3
  • R. van Grondelle
    • 1
  • M. L. Groot
    • 1
  1. 1.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.E. I. du Pont de Nemours & CoWilmingtonUSA
  3. 3.CEA SaclayGif-sur-YvetteFrance

Personalised recommendations