Dry in the Water: The Superhydrophobic Water Fern Salvinia – a Model for Biomimetic Surfaces

  • Zdenek Cerman
  • Boris F. Striffler
  • Wilhelm Barthlott


Over millions of years plant surfaces evolved optimized complex multifunctional interfaces. They fulfill different functions in terrestrial plants such as limitation of uncontrolled water loss, protection against various biotic and abiotic influences, and they play a role in the attachment of insects. A recent overview on plant surface functions is presented by Jeffree (in Riederer, 2006). One of the most remarkable functions is closely linked with plant epicuticular waxes. The outermost barrier is formed by a cuticle consisting of two major components: a polyester matrix with embedded and overlaying lipids.


Contact Angle Drag Reduction Superhydrophobic Surface High Contact Angle Plant Cuticle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam NK (1963) Principles of water-repellency. In: Waterproofing and water-repellency ed by. Moilliet JL. Amsterdam: Elsevier, pp. 1–23.Google Scholar
  2. Alberti G, DeSimone A (2005) Wetting of rough surfaces: a homogenization approach. Proceedings of the Royal Society London A 461: 79–97.CrossRefGoogle Scholar
  3. Andrews FM, Ellis MM (1913) Some observations concerning the reactions of leaf hairs of Salvinia natans. Torrey Botany Club Bulletin 40: 441–445.CrossRefGoogle Scholar
  4. Baker EA (1982) Chemistry and morphology of plant epicuticular waxes. In: The plant cuticle ed by. Cutler DF, Alvin KL, Price CE. London: Academic Press, pp. 139–166.Google Scholar
  5. Balasubramanian AK, Miller AC, Rediniotis OK (2004) Microstructured hydrophobic skin for hydrodynamic drag reduction. AIAA Journal 42: 411–414.CrossRefGoogle Scholar
  6. Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Evans Review No. 3: Structure-function relationships of the plant cuticle and cuticular waxes – a smart material. Functional Plant Biology 33: 893–910.CrossRefGoogle Scholar
  7. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202: 1–8.CrossRefGoogle Scholar
  8. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126: 237–260.CrossRefGoogle Scholar
  9. Barthlott W, Riede K, Wolter M (1994) Mimicry and ultrastructural analogy between the semi-aquatic grasshopper Paulinia acuminata (Orthoptera: Pauliniidae) and its foodplant, the water-fern Salvinia auriculata (Filicatae: Salviniaceae). Amazoniana 13: 47–58.Google Scholar
  10. Barthlott W, Wollenweber E (1981) Zur Feinstruktur, Chemie und taxonomischen Signifikanz epicuticularer Wachse und ähnlicher Sekrete. Tropische und Subtropische Pflanzenwelt 32: 7–67.Google Scholar
  11. Born A, Ermuth J, Neinhuis C (2000) Fassadenfarbe mit Lotus-Effekt: Erfolgreiche Übertragung bestätigt. Phänomen Farbe 2: 34–36.Google Scholar
  12. Bush JWM, Hu DL (2006) Walking on water: Biolocomotion at the Interface. Annual Review of Fluid Mechanics 38: 339–369.CrossRefGoogle Scholar
  13. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Transactions of the Faraday Society 40: 546–551.CrossRefGoogle Scholar
  14. Cerman Z, Striffler BF, Barthlott W, Stegmeier T, Scherrieble A, von Arnim V (2006) Superhydrophobe Oberflächen für Unterwasseranwendungen. Patent, DE 10 2006 009 761: 1–13.Google Scholar
  15. Chen W, Fadeev AY, Hsieh MC, Öner D, Youngblood J, McCarthy TJ (1999) Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. Langmuir 15: 3395–3399.CrossRefGoogle Scholar
  16. Choi C-H, Kim C-J (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Physical Review Letters 96: 4.Google Scholar
  17. Cottin-Bizonne C, Barrat J-L, Bocquet L, Charlaix E (2003) Low friction flows of liquids at nanopatterned interfaces. Nature Materials 2: 238.CrossRefGoogle Scholar
  18. Crisp DJ (1963) Waterproofing mechanisms in animals and plants. In: Waterproofing and water-repellency ed by. Moilliet JL. New York: Elsevier, pp. 416–481.Google Scholar
  19. Crisp DJ, Thorpe WH (1950) A simple replica technique suitable for the study of surface structures. Nature 165: 273.PubMedCrossRefGoogle Scholar
  20. De Gennes PG (1985) Wetting: statics and dynamics. Reviews of Modern Physics 57: 827–863.CrossRefGoogle Scholar
  21. Fogg GE (1944) Diurnal fluctuation in a physical property of leaf cuticle. Nature 329: 515.CrossRefGoogle Scholar
  22. Fogg GE (1948) Adhesion of water to the external surfaces of leaves. Discussions of the Faraday Society 3: 162–169.CrossRefGoogle Scholar
  23. Fukagata K, Kasagi N, Koumoutsakos P (2006) A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Physics of fluids 18: 1–8.Google Scholar
  24. Fukuda K, Tokunaga J, Nobunaga T, Nakatani T, Iwasaki T, Kunitake Y (2001) Frictional drag reduction with air lubricant over a super-water-repellent surface. Journal of Marine Science and Technology 5: 123–130.CrossRefGoogle Scholar
  25. Fürstner R (2002) Untersuchungen zum Einfluss von Struktur und Chemie auf die Benetzbarkeit und die Selbstreinigung superhydrophober Oberflächen. Aachen: Shaker-Verlag.Google Scholar
  26. Günther I, Wortmann GB (1966) Dust on the surface of leaves. Journal of Ultrastructure Research 15: 522–527.PubMedCrossRefGoogle Scholar
  27. Hall DM, Burke W (1974) Wettability of leaves of a selection of New Zealand plants. New Zealand Journal of Botany 12: 283–298.Google Scholar
  28. Henoch C, Krupenkin TN, Kolodner P, Taylor JA, Hodes MS, Lyons AM (2006) Turbulent drag reduction using superhydrophobic surfaces. In: 3rd AIAA Flow Control Conference, 5–8 June 2006, San Francisco, CA ed by. Breuer K. Reston, VA: American Institute of Aeronautics and Astronautics, pp. AIAA Paper 2006–3192.Google Scholar
  29. Herzog R (1934) Anatomische und experimentell-morphologische Untersuchungen über die Gattung Salvinia. Planta 22: 490–514.CrossRefGoogle Scholar
  30. Herzog R (1935) Ein Beitrag zur Systematik der Gattung Salvinia. Hedwigia 74: 257–284.Google Scholar
  31. Holloway PJ (1969a) The effects of superficial wax on leaf wettability. Annals of applied biology 63: 145–153.Google Scholar
  32. Holloway PJ (1969b) Chemistry of leaf waxes in relation to wetting. Journal of the science of food and agriculture 20: 124–128.Google Scholar
  33. Holloway PJ (1970) Surface factors affecting the wetting of leaves. Pesticide science 1: 156–163.CrossRefGoogle Scholar
  34. Holloway PJ (1971) The chemical and physical characteristics of leaf surfaces. In: Ecology of leaf surface micro-organisms ed by. Preece TF, Dickinson CH. New York.Google Scholar
  35. Jacono C, Pitman B (2001) Salvinia molesta: Around the world in 70 years. Aquatic Nuisance Species Digest 4: 13–16.Google Scholar
  36. Jeffree CE (2006) The fine structure of the plant cuticle. In: Biology of the plant cuticle ed by. Riederer M, Müller C. Oxford: Blackwell Publishing, pp. 11–125.CrossRefGoogle Scholar
  37. Jopp J, Grüll H, Yerushalmi-Rozen R (2004) Wetting behavior of water droplets on hydrophobic microtextures of comparable size. Langmuir 20: 10015–10019.PubMedCrossRefGoogle Scholar
  38. Juniper BE, Bradley DE (1958) The carbon replica technique in the study of the ultrastructure of leaf surfaces. Journal of Ultrastructure Research 2: 16–27.CrossRefGoogle Scholar
  39. Kam-Wing L, Furtado JI (1977) The chemial control of Salvinia molesta (Mitchell) and some related toxicological studies. Hydrobiologia 56: 49–61.CrossRefGoogle Scholar
  40. Kaul RB (1976) Anatomical observations on floating leaves. Aquatic Botany 2: 215–234.CrossRefGoogle Scholar
  41. Kawashima H, Kakugawa A, Kodama Y, Takahashi T (1998). A Relation Between Drag Reduction and the Distribution of Microbubbles. Tokyo: Ship Research Institute, pp. 1–3.Google Scholar
  42. Khan E, Virojnagud W, Ratpukdi T (2004) Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 57: 681–689.PubMedCrossRefGoogle Scholar
  43. Kodama Y (1998). Effect of Microbubble Distribution on Skin Friction Reduction. Tokyo: Ship Research Institute, pp. 1–4.Google Scholar
  44. Kodama Y, Kakugawa A, Takahashi T, Nagaya S, Kawamura T (2001). Drag Reduction of Ships by Microbubbles. National Maritime Research Institute of Japan.Google Scholar
  45. Kodama Y, Kakugawa A, Takahashi T, Nagaya S, Sugiyama K (2003) Microbubbles: Drag reduction mechanism and applicability to ships. In: 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan ed by. Board NS Washington: The National Academies Press, pp. 1–20.Google Scholar
  46. Köhler D (1991) Notes on the diving behaviour of the water shrew, Neomys fodiens (Mammalia, Soricidae). Zoologischer Anzeiger 227: 218–228.Google Scholar
  47. Kopp J (1936) Über die Kulturbedingungen und die systematischen Merkmale der Salviniaartn. Inaugural-Dissertation, Buchdruckerei Heinrich Pöppinghaus, Münster, 48.Google Scholar
  48. Lafuma A, Quéré D (2003) Superhydrophobic states. Nature Materials 2: 457–460.PubMedCrossRefGoogle Scholar
  49. Lee S-M, Kwon TH (2006) Mass-producible replication of highly hydrophobic surfaces from plant leaves. Nanotechnology 17: 3189–3196.CrossRefGoogle Scholar
  50. Lee S-M, Lee HS, Kim DS, Kwon TH (2006) Fabrication of hydrophobic films replicated from plant leaves in nature. Surface and Coatings Technology 201: 553–559.CrossRefGoogle Scholar
  51. Linskens HF (1950) Quantitative Bestimmung der Benetzbarkeit von Blattoberflächen. Planta 38: 591–600.CrossRefGoogle Scholar
  52. Linskens HF (1952) Über die Änderung der Benetzbarkeit von Blattoberflächen und deren Ursache. Planta 41: 40–51.CrossRefGoogle Scholar
  53. London: Academic Press, pp. 39–53.Google Scholar
  54. Marmur A (2003) Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19: 8343–8348.CrossRefGoogle Scholar
  55. Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20: 3517–3519.PubMedCrossRefGoogle Scholar
  56. Marmur A (2006) Underwater superhydrophobicity: Theoretical Feasibility. Langmuir 22: 1400–1402.PubMedCrossRefGoogle Scholar
  57. McCormick ME, Bhattacharyya R (1973) Drag Reduction of a Submersible Hull by Electrolysis. Naval Engineers Journal April: 11–16.Google Scholar
  58. McHale G, Shirtcliffe NJ, Newton MI (2004) Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20: 10146–10149.PubMedCrossRefGoogle Scholar
  59. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 79: 667–677.CrossRefGoogle Scholar
  60. Neinhuis C, Wolter M, Barthlott W (1992) Epicuticular wax of Brassica oleracea: changes of microstructure and ability to be contaminated of leaf surfaces after application of TRITON X-100. Journal of Plant Diseases and Protection 99: 542–549.Google Scholar
  61. Nelson LS, Skogerboe JG, Getsinger KD (1991) Herbicide evaluation against giant Salvinia. Journal Aquatic Plant Management 39: 48–53.Google Scholar
  62. Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on -CF3 alignment. Langmuir 15: 4321–4323.CrossRefGoogle Scholar
  63. Nobel PS (2005) Physicochemical and Environmental Plant Physiology. Amsterdam: Elsevier Academic Press.Google Scholar
  64. Nun E, Oles M, Schleich B (2002) Lotus-Effect®-surfaces. Macromolecular Symposia 187: 677–682.CrossRefGoogle Scholar
  65. Osawa S, Yabe M, Miyamura M, Mizuno K (2006) Preparation of super-hydrophobic surface on biodegradable polymer by transcribing microscopic pattern of water-repellent leaf. Polymer 47: 3711–3714.CrossRefGoogle Scholar
  66. Paffett JAH (1972) Improvements in and relating to water-borne vessels. UK 1 300 132: 1–6.Google Scholar
  67. Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19: 1249–1253.CrossRefGoogle Scholar
  68. Pringsheim N (1863) Zur Morphologie der Salvinia natans. Jahrbuch für wissenschaftliche Botanik 3: 484–541.Google Scholar
  69. Quéré D (2002a) Fakir droplets. Nature Materials 1: 14–15.Google Scholar
  70. Quéré D (2002b) Rough ideas on wetting. Physica A 313: 32–46.Google Scholar
  71. Quéré D (2005) Non-sticking drops. Reports on Progress in Physics 68: 2495–2532.CrossRefGoogle Scholar
  72. Rentschler I (1971) Die Wasserbenetzbarkeit von Blattoberflächen und ihre submikroskopische Struktur. Planta 96: 119–135.CrossRefGoogle Scholar
  73. Ribeiro TH, Rubio J, Smith RW (2003) A dried hydrophobic aquaphyte as an oil filter for oil/water emulsions. Spill Science andTechnology Bulletin 8: 483–489.CrossRefGoogle Scholar
  74. Riederer M, Müller C, eds. (2006) Biology of the plant cuticle. Oxford: Blackwell Publishing, pp. 456.CrossRefGoogle Scholar
  75. Room PM, Harley KLS, Forno IW, Sands DPA (1981) Successful biological control of the floating weed Salvinia. Nature 294: 78–80.CrossRefGoogle Scholar
  76. Schwab M, Noga G, Barthlott W (1995) Bedeutung der Epicuticularwachse für die Pathogenabwehr am Beispiel von Botrytis cinerea-Infektionen bei Kohlrabi und Erbse. Gartenbauwissenschaft 60: 102–109.Google Scholar
  77. Sharifi MR, Gibson AC, Rundel PW (1997) Surface dust impacts on gas exchange in Mojave Desert shrubs. Journal of applied Ecology 34: 837–846.CrossRefGoogle Scholar
  78. Shibuichi S, Onda T, Satoh N, Tsujii K (1996) Super water-repellent surfaces resulting from fractal structure. Journal of Physical Chemistry 100: 19512–19517.CrossRefGoogle Scholar
  79. Sota ERdl (1962a) Contribucion al concimiento de las Salviniaceae neotropicales. I. Salvinia oblongifolia Martius. itDarwiniana 12: 465–498.Google Scholar
  80. Sota ERdl (1962b) Contribucion al concimiento de las Salviniaceae neotropicales. III. Salvinia herzogii nov. spec. Darwiniana 12: 499–513.Google Scholar
  81. Suter RB, Stratton GE, Miller PR (2004) Taxonomic variation among spiders in the ability to repel water: surface adhesion and hair density. The Journal of Arachnology 32: 11–21.CrossRefGoogle Scholar
  82. Tokunaga J, Kumada M, Sugiyama Y, Watanabe N, Chong Y-B, Matsubara N (1993) Method of forming air film on submerged surface of submerged part-carrying structure, and film structure on submerged surface. WO 0 616 940 A1: 1–14.Google Scholar
  83. Truong V-T (2001). Drag Reduction Technologies. Fishermans Bend Vic; Australia: DSTO Aeronautical and Maritime Research Laboratory, pp. 1–22.Google Scholar
  84. University of Tokyo, pp. 1–6.Google Scholar
  85. Vogelaar L, Lammertink RGH, Wessling M (2006) Superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step. Langmuir 22: 3125–3130.PubMedCrossRefGoogle Scholar
  86. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry 28: 988–994.CrossRefGoogle Scholar
  87. Werner O, Wagberg L, Lindström T (2005) Wetting of structured hydrophobic surfaces by water droplets. Langmuir 21: 12235–12243.PubMedCrossRefGoogle Scholar
  88. Wulf M, Wehling A, Reis O (2002) Coatings with self-cleaning properties. Macromolecular Symposia 187: 459–467.CrossRefGoogle Scholar
  89. Yanagimachi I, Nashida N, Iwasa K, Suzuki H (2005). Enhancement of sensitivity of electrochemical heavy metal detection by evaporative concentration using a super-hydrophobic surface. Transducers 05. Seoul, Korea, 1207–1210.Google Scholar
  90. Zawidzki S (1911) Beiträge zur Entwicklungsgeschichte von Salvinia natans. Beihefte Botanisches Zentralblatt 28: 17–65.Google Scholar
  91. Ziegenspeck H (1942) Zur physikalischen Chemie unbenetzbarer besonders bewachster Blätter. Kolloid-Zeitschrift 100: 401–403.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zdenek Cerman
    • 1
  • Boris F. Striffler
    • 1
  • Wilhelm Barthlott
    • 1
  1. 1.Nees Institute for Biodiversity of PlantsBonn UniversityBonnGermany

Personalised recommendations