Advanced Photonic Systems on the Wing-Scales of Lepidoptera


An extensive array of optical effects across many animal and insect species is revealed by surveys of the natural world. While the aesthete may take delight in such phenomena, students of photonics have increasingly been prepared to look more closely; deriving understanding and inspiration from nature’s optical ingenuity.


Photonic Crystal Structural Colour Optical Effect Cuticle Layer Polarization Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agoston, G.A. (1987) Colour Theory and Its Applications in Art and Design, Springer-Verlag, New-York.Google Scholar
  2. Anderson, T.F. and Richards, A.G. (1942) An electron microscope study of some structural colours of insects, J. Appl. Phys. 13, 748–758.CrossRefGoogle Scholar
  3. Argyros, A. et al. (2002) Electron tomography and computer visualisation of a 3-dimensional photonic crystal in a butterfly wing-scale, Micron 33, 483–487.PubMedCrossRefGoogle Scholar
  4. Arnold, K.E., Owens, I.P.F. and Marshall, N.J. (2002) Science 295, 92.PubMedCrossRefGoogle Scholar
  5. Bates, H.W. (1864) The Naturalist on the River Amazons” (2nd ed.) London.Google Scholar
  6. Bernhard, C. (1965) The Functional Organization of the Compound Eye. Pergamon Press, New York.Google Scholar
  7. Biedermann, W. (1914) Farbe und Zeichnung der Insecten, Handbuch der Vergleichenden Physiologie, Teil II, 1657–1994, Jena, Verlag von Gustav Fischer.Google Scholar
  8. Burnham, R.W. Hanes, R.M. and Bartleson, C.J. (1963) Color, Wiley, New York.Google Scholar
  9. Erchak, A. et al. (2001) APL, 78, 563.Google Scholar
  10. Evans, R.M. (1943) Visual processes and colour photography, J. Opt. Soc. Am., 33, 579–614.CrossRefGoogle Scholar
  11. Fox, D.L. (1976) Animal Biochromes and Structural Colours, University California Press, Berkeley.Google Scholar
  12. Frank, F. (1939) Die Farbung der Vogelfeder durch Pigment und Struktur”, J. Orn. Lpz., 3, 426–523.Google Scholar
  13. Ghiradella, H. (1994) Structure of butterfly scales: Patterning in an insect cuticle, Microsc. Res. Tech. 27, 429–438.PubMedCrossRefGoogle Scholar
  14. Ghiradella, H. and Radigan, W. (1976) Development of butterfly scales; II. Struts, lattices and surface tension, J. Morph. 150, 279–296.CrossRefGoogle Scholar
  15. Ghiradella, H., Aneshansley, D., Eisner, T., Silbergleid, R.E. and Hinton, H.E. (1972) Ultra-violet reflection of a male butterfly: Interference colour caused by thin layer elaboration of wing scales, science. 178, 1214–1217.PubMedCrossRefGoogle Scholar
  16. Hancock, D.L. (1983) Arnol. Zim. 9, 181.Google Scholar
  17. Huxley, A.F. (1968) A theoretical treatment of the reflection of light by multilayer structures, J. Exp. Biol. 48, 227–245.Google Scholar
  18. Huxley, J. (1976) The coloration of Papilio zalmoxis and P. antimachus and the discovery of Tyndall blue in butterflies, Proc. Roy. Soc. (B) 193, 441–453.CrossRefGoogle Scholar
  19. Kalmus, H. (1941) Physiology and Ecology of cuticle colour in insects, Nature 148, 428–431.CrossRefGoogle Scholar
  20. Kelber, A.L., Thunell, C. and Arikawa, K. (2001) J. Exp. Biol. 204, 2469.PubMedGoogle Scholar
  21. Land, M.F. (1972) The physics and biology of animal reflectors, Prog. Biophys. Mol. Biol. 24, 75–106.PubMedCrossRefGoogle Scholar
  22. Lawrence, C.R., Vukusic P. and Sambles J.R. (2002) Grazing incidence iridescence from a butterfly wing. App. Opt. 41:437–441.CrossRefGoogle Scholar
  23. MacAdam, D.L. (1956) Perceptions of colour in projected and televised pictures, J. Soc. Motion Picture Tel. Eng. 65, 455–4669.Google Scholar
  24. Mason, C.W. (1926) Structural colours in insects, I, J. Phys. Chem. 30, 383–95.CrossRefGoogle Scholar
  25. Mason, C.W. (1927b) Structural colours in insects, III, J. Phys. Chem. 31, 1856–72.Google Scholar
  26. Mason, C.W. (1923a) Structural colours in feathers, I, J. Phys. Chem. 27, 201–51.Google Scholar
  27. Mason, C.W. (1923b) Structural colours in feathers, II, J. Phys. Chem. 27, 401–47.Google Scholar
  28. Mason, C.W. (1924) Blue eyes, J. Phys. Chem. 28, 498–501.CrossRefGoogle Scholar
  29. Mason, C.W. (1927a) Structural colours in insects, II, J. Phys. Chem. 31, 321–54.Google Scholar
  30. Mason, C.W. (1929) Transient colour changes in the tortoise beetle (Coleop. Chrysomelidae), Ent. News 40, 52–6.Google Scholar
  31. Mayer, A.G. (1897) On the colour and colour pattern of moths and butterflies, Bull. Mus. Comp. Zool. Harv. 30, 169–259.Google Scholar
  32. Mazel, C.H., Cronin, T.W., Caldwell R.L. and Marshall, N.J. (2004) Science 303, 51.PubMedCrossRefGoogle Scholar
  33. Michelson, A.A. (1911) On the metallic colouring in birds and insects, Phil. Mag., 6th ser. 21, 554–67.CrossRefGoogle Scholar
  34. Morris, R.B. (1975) Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak. J. Ent., (A) 49, 149–154.Google Scholar
  35. Neville, A.C. (1975) Biology of the Arthropod Cuticle. Springer-Verlag, BerlinGoogle Scholar
  36. Nijhout, H.F., (1991) The Development and Evolution of Butterfly Wing Patterns, Smithsonian Institute Press, Washington.Google Scholar
  37. Onslow, H. (1921) On a periodic structure in many insect scales and the cause of their iridescent colours, Phil. Trans. B, 211, 1–74.Google Scholar
  38. Prum, R.O., Quinn, T and Torres, R.H., (2006), Anatomically diverse butterfly scales all produce structural colours by coherent scattering, J. Exp. Biol. 209, 748–765.PubMedCrossRefGoogle Scholar
  39. Rayleigh Lord (elder), (1919) On the optical character of some brilliant animal colours, Phil. Mag., 6th ser. 37, 98–111.Google Scholar
  40. Rayleigh Lord (younger), (1923) Studies of iridescent colour and the structure producing it. IV. Iridescent beetles., Proc. Roy. Soc., A 103, 233–9.CrossRefGoogle Scholar
  41. Riley, P.A. (1997) Molecules in focus: Melanin, Int. J. Biochem. Cell. Biol. 29 (11), 1235–1239.PubMedCrossRefGoogle Scholar
  42. Sanders J.V. (1968) Diffraction of light by Opals, Acta Crst. A 24, 427–434.CrossRefGoogle Scholar
  43. Simon, H. (1971) The Splendor of Iridescence, Dodd, Mead and Company, New York.Google Scholar
  44. Strong, R.M. (1902) The metallic colours of feathers from the neck of the domestic pigeon, Biol. Bull. Woods Hole 3, 85–7.CrossRefGoogle Scholar
  45. Süffert, F. (1924) Morphologie und optik der Schmetterslingsschuppen insbesondere die Schillerfarben der Schmetterlinge, Z. Morph. Ökol. Tiere 1, 171–308.CrossRefGoogle Scholar
  46. Vos, W.L. and Polman, A. (2001) MRS Bull. 26, 642.Google Scholar
  47. Vukusic, P. and Sambles, J.R. (2003) Photonic structures in Biology, Nature 424, 852–855.PubMedCrossRefGoogle Scholar
  48. Vukusic, P., Sambles, J. R. and Lawrence, C.R. (2000) Structural colour: Colour mixing in wing scales of a butterfly, Nature 404, 457.PubMedCrossRefGoogle Scholar
  49. Vukusic, P., Sambles, J. R., Lawrence, C.R. and Wakely, G. (2000) Sculpted multilayer optical effects in two species of Papilio butterfly, App. Opt. 40 (7), 1116–1125.CrossRefGoogle Scholar
  50. Vukusic, P., Sambles, J.r. and Lawrence, C.R. (2004) Structurally assisted blackness in butterfly scales, Proc. Roy. Soc. Lond. B. (Suppl. i.e. Biology Letters), 271, S237–S239.CrossRefGoogle Scholar
  51. Vukusic, P., Sambles, J.R., Lawrence, C.R. and Wootton, R.J. (2000) Now you see it – now you don’t, Nature 410, 36.CrossRefGoogle Scholar
  52. Vukusic, P., Sambles, J.R., Lawrence, C.R., and Wootton, R.J. (1999) Quantified interference and diffraction in single Morpho butterfly scales, Proc. Roy. Soc. B. 266, 1403–1411.CrossRefGoogle Scholar
  53. Zakharov, E.U., Caterino, M.S. and Sperling, F.A.H. (2004) Syst. Biol. 53, 193.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of PhysicsUniversity of ExeterExeterUK

Personalised recommendations