Skip to main content

Alternative Tasks of the Insect Arolium with Special Reference to Hymenoptera

  • Chapter
Functional Surfaces in Biology

Abstract

Apterigous terrestrial insects walk over relatively flat surfaces the radii of curvature of which are not less in size than their bodies or legs. They grasp at the surface with claws of several extremities, clasping the foothold between opposite legs. Without any sticky pads, machilids run extremely fast on stones and rocks of an arbitrary inclination. Hook-like interlocking mechanisms of much smaller dimension also are found in secondary legs of caterpillars (Nielsen and Common, 1991; Hasenfuss 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attygalle, A.B., Aneshansley, D.J., Meinwald, J., and Eisner, T. (2000) Defence by foot adhesion in a chrysomelid beetle (Hemisphaerota cyanea): characterization of the adhesive oil. Zoology 103: 1–6.

    Google Scholar 

  • Autumn, K., and Peattie, A.M. (2002) Mechanisms of adhesion in geckos. Integr. Comp. Biol. 42: 1081–1090.

    Google Scholar 

  • Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., and Full, R.J. (2000) Adhesive force of a single gecko foot hair. Nature 405: 681–685.

    PubMed  CAS  Google Scholar 

  • Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., and Fall, R.J. (2002) Evidence for van der Waals adhesion in gecko setae. PNAS 99(19): 12252–12256.

    PubMed  CAS  Google Scholar 

  • Barnes, J., Smith, J., Oines, C., and Mundl, R. (2002) Bionics and wet grip. Tire Technol. Int. 2002(12): 56–61.

    Google Scholar 

  • Basibuyuk, H.H., Quicke, D.L.J., Rasnitsyn, A.P., and Fitton, M.G. (2000) Morphology and sensilla of the orbicula, a sclerite between the tarsal claws, in the Hymenoptera. Ann. Entomol. Soc. Amer. 93: 625–636.

    Google Scholar 

  • Bässler, U., Rohrbacher, J., Karg, G., and Breatel, G. (1991) Interruption of searching movements of partly restrained front legs of stick insects, a model situation for the start of the stance phase. Biol. Cybern. 65: 507–514.

    Google Scholar 

  • Bauchhenss, E. (1979) Die Pulvillen von Calliphora erythrocephala Meig. (Diptera, Brachycera) als Adhäsionsorgane. Zoomorphologie 93: 99–123.

    Google Scholar 

  • Bauchhenss, E., and Renner, M. (1977) Pulvillus of Calliphora erythrocephala Meig. (Diptera; Calliphoridae). Int. J. Insect Morph. Embryol. 6: 225–227.

    Google Scholar 

  • Baur, F., and Gorb, S.N. (2000) How the bee releases its leg attachment devices. Biona Rep. 15: 295–297.

    Google Scholar 

  • Beutel, R.G., and Gorb, S.N. (2001.) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 39: 177–207.

    Google Scholar 

  • Billen, J., Thijs, B., Ito, F., and Gobin, B. (2005) The pretarsal footprint gland of the ant Amblyopone reclinata (Hymenoptera, Formicidae) and its role in nestmate recognition. Arthropod Struct. Dev. 34: 111–116.

    Google Scholar 

  • Brown, J.E., and Loeb, G.E. (1999) A reductionist approach to creating and using neuromusculoskeletal models. In: Biomechanics and Neural Control of Posture and Movement, ed. by Winter, J.M., and Crago, P.E. New York: Springer verlag, pp. 148–163.

    Google Scholar 

  • Conde-Beutel, R., Erickson, E.H., and Carlson, S.D. (1989) Scanning electron microscopy of the honeybee, Apis mellifera L. (Hymenoptera: Apidae) pretarsus. Int. J. Insect Morph. Embryol. 24: 59–69.

    Google Scholar 

  • Crossland, M.W.J., Su, N.-Y., and Scheffrahn, R.H. (2005) Arolia in termites (Isoptera): functional significance and evolutionary loss. Insect. Soc. 52: 63–66.

    Google Scholar 

  • Dahl, F. (1884) Ãœber den Bau und die Functionen des Insektenbeins. Zool. Anz. 7: 38–41.

    Google Scholar 

  • Dai, Z., Gorb, S.N., and Schwarz, U. (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 205: 2479–2488.

    PubMed  Google Scholar 

  • Dashman, T. (1953) Terminology of the pretarsus. Ann. Enlomol. Soc. Amer. 46: 56–62.

    Google Scholar 

  • Dixon, A.F.G., Croghan, P.C., and Gowing, R.P (1990) The mechanism by which aphids adhere to smooth surfaces. J. Exp. Biol. 152: 243–253.

    Google Scholar 

  • Domenichini, G. (1994) I pretarsi delle zampe cursorie in insetti olometaboli: strutture e funzioni. Atti Acad. Nat. Ital. Entomol. Rendiconti 42: 19–127.

    Google Scholar 

  • Eigenbrode, S.D., Castagnola, T., Roux, M.-B., and Steljes, L. (1996) Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloom. Entomol. Exp. Appl. 81: 335–343.

    Google Scholar 

  • Emeljanov, A.F. (1982) Structure and evolution of tarsi in Dictyopharidae (Homoptera) (in Russ.). Entomologicheskoe Obozrenie 61: 501–516.

    Google Scholar 

  • Emeljanov, A.F. (1987) Phylogeny of cicads (Homoptera, Cicadina) by comparative morphological data (in Russ.). Trudy Vsesoyuznogo Entomologicheskogo Obschestva 69: 19–109.

    Google Scholar 

  • Endlein, T., and Federle W. (2007) Walking on smooth or rough ground: passive control of pretarsal attachment in ants.J. Comp. Physiol. A 194: 49–60.

    Google Scholar 

  • Faucheux M.J. (1985.) Structure of the tarso-pretarsal chordotonal organ in the imago of Tineola bisselliella Humm. (Lepidoptera: Tineidae). Int. J. Insect Morph. and Embryol. 14: 147–154.

    Google Scholar 

  • Federle, W., and Endlein, T. (2004) Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthr. Struct. Dev. 33: 67–75.

    Google Scholar 

  • Federle, W., Baumgarner, W., and Hölldobler, B. (2004) Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent. J.Exp. Biol. 207: 67–74.

    PubMed  Google Scholar 

  • Federle, W., Brainerd, E.L., McMahon, T.A., and Hölldobler, B. (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc. Nat. Acad. Sci. 98: 6215–6220.

    PubMed  CAS  Google Scholar 

  • Federle, W., Riehle, M., Curtis, A.S.G., and Full, R.J. (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr. Comp. Biol. 42: 1100–1106.

    Google Scholar 

  • Fennah, R. (1945) Character of taxonomic importance in the pretarsus of Auchenorrhyncha (Homoptera). Proc. Entomol. Soc. Wasgington 47: 120–128.

    Google Scholar 

  • Foelix, R. (1982) The biology of spiders, Massachusetts and London: Harvard University Press.

    Google Scholar 

  • Frantsevich, L., and Cruse, H. (1997) The stick insect, Obrimus asperrimus (Phasmida, Bacillidae) walking on different substrates. J.Insect Physiol. 43: 447–455.

    CAS  Google Scholar 

  • Frantsevich, L.I., and Gorb, S.N. (2002) Arcus as a tensegrity structure in the arolium of wasps (Hymenoptera: Vespidae). Zoology 105: 225–237.

    PubMed  Google Scholar 

  • Frantsevich, L., and Gorb, S. (2004) Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism. Arthr. Struct. Dev. 33: 77–89.

    Google Scholar 

  • Frantsevich, L.I., and Mokrushov, P.A. (1980) Turning and righting in Geotrupes (Coleoptera, Scarabaeidae). J. Comp. Physiol. 136: 279–289.

    Google Scholar 

  • Frantsevich, L., Govardovski, V., Gribakin, F., Nikolajev G., Pichka, V., Polanovsky, A., Shenchenko, V., and Zolotov, V. (1977) Astroorientation in Lethrus (Coleoptera, Scarabaeidae). J.Comp.Physiol. 121: 253–271.

    Google Scholar 

  • Frantsevich, L., Ji, A., Dai, Z., Wang, J., Frantsevich, L., and Gorb S.N. (2008) Adhesive properties of the arolium of a lantern-fly, Lycorma delicatula (Auchenorrhyncha, Fulgoridae). J. Insect Physiol. 54: 818–827.

    PubMed  CAS  Google Scholar 

  • Frazier, S.F., Larsen, G.S., Neff, D., Quimby, L., Carney, M., Di Caprio R.A., and Zill, S.N. (1999) Elasticity and movements of the cockroach tarsi in walking. J. Comp. Physiol. A 185: 157–172.

    Google Scholar 

  • Full, R.J., and Koditschek, D.E. (1999) Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202: 3325–3332.

    PubMed  CAS  Google Scholar 

  • Gannon, A.J., Bach, C.E., and Walker, G. (1994) Feeding patterns and attachment ability of Altica subplicata (Coleoptera: Chrysomelidae) on sand-dune willow. Great Lakes Entomologist 27: 89–101.

    Google Scholar 

  • Gao, H., Wang, X., Yao, H., Gorb, S., and Arzt, E. (2005) Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37: 275–285.

    Google Scholar 

  • Ghatak, A., Mahadevan, L., Chung, J.Y., Chaudhury, M.K., and Shenoy, V. (2004) Peeling from a biomimetically patterned thin elastic film. Proc. R. Soc. Lond. A. 460: 2725–2735.

    Google Scholar 

  • Ghazi-Bayat, A. (1979) Zur Oberflächenstruktur der tarsalen Haftlappen von Coreus marginatus (L.) (Coreidae, Heteroptera). Zool. Anz. 203: 345–347.

    Google Scholar 

  • Ghazi-Bayat, A., and Hasenfuss, I. (1980a) Zur Herkunft der Adhäsionsflüssigkeit der tarsalen Haftlappen bei den Pentatomidae (Heteroptera). Zool. Anz. 204: 13–18.

    Google Scholar 

  • Ghazi-Bayat, A., and Hasenfuss, I. (1980b) Die Oberflächenstrukturen des Prätarsus von Elasmucha ferrugaia (Fabricius) (Acanthosomatidae, Heteroptera). Zool. Anz. 205: 76–80.

    Google Scholar 

  • Ghazi-Bayat, A., and Hasenfuss, I. (1981) Ãœber den Transportweg der Haftflüssigkeit der Pulvilli bei Coptosoma sculellatum (Geoffr.) (Plataspididae, Heteroptera). Nachrichtenblatt Bayer. Entomol. 30: 58–58.

    Google Scholar 

  • Gladun, D.V. (2008) Morphology of the pretarsus of the sawflies and horntails (Hymenoptera: ‘Symphyta’). Arthropod Struct. Dev. 37: 13–28.

    PubMed  CAS  Google Scholar 

  • Gladun, D., and Gorb, S.N. (2007) Insect walking techniques on thin stems. Arthropod-Plant Interact. 1: 77–91.

    Google Scholar 

  • Gladun, D., and Gumovsky, A. (2006) The pretarsus in Chalcidoidea (Hymenoptera Parasitica): functional morphology and possible phylogenetic implications. Zool. Scr. 35: 607–626.

    Google Scholar 

  • Gorb, S.N. (1996) Design of insect unguitractor apparatus. J. Morphol. 230: 219–230.

    Google Scholar 

  • Gorb, S. N., (1998b) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc. Roy. Soc. Lond. B 265: 747–752.

    Google Scholar 

  • Gorb, S.N. (2001) Attachment devices of insect cuticle. Dordrecht, Boston, London: Kluwer Academic Publishers.

    Google Scholar 

  • Gorb, S.N. (2005) Uncovering insect stickiness: structure and properties of hairy attachment devices. Am. Entomol. 51: 31–35.

    Google Scholar 

  • Gorb, S.N. (2008) Smooth attachment devices in insects. In: Advances in Insect Physiology, Volume 34: Insect Mechanics and Control, edited by Casas, J., and Simpson, S. J., London: Elsevier Ltd., pp. 81–116.

    Google Scholar 

  • Gorb, S., and Scherge, M. (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultra-structure of a highly deformable material. Proc. R. Soc. London B 186: 821–831.

    CAS  Google Scholar 

  • Gorb, E.V., and Gorb, S.N. (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol. Exp. Appl. 105: 13–28.

    Google Scholar 

  • Gorb, S.N., and Gorb, E.V. (2004) Ontogenesis of the attachment ability in the bug Coreus marginatus (Heteroptra, Insecta). J. Exp. Biol. 207: 2917–2924.

    PubMed  Google Scholar 

  • Gorb, S.N., Beutel, R.G., Gorb, E.V., Jiao, Y., Kastner, V., Niederegger, S., Popov, V.L., Scherge, M., Schwarz, U., and Vötsch, W. (2002) Structural design and biomechanics of friction-based releasable attachment devices in insects. Integr. Comp. Biol. 42: 1127–1139.

    Google Scholar 

  • Gorb, S.N., Jiao, Y., and Scherge, M. (2000) Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tellgoniidae). J. Comp. Physiol. A 186: 821–831.

    PubMed  CAS  Google Scholar 

  • Gregory, S., Larsen, S., Frazier, F., Zill, S.N. (1997) The tarso-pretarsal chordotonal organ as an element in cockroach walking. J. Comp. Physiol. A 180: 683–700.

    Google Scholar 

  • Hasenfuss, I. (1977) Die Herkunft der Adhäsionsflüssigkeit bei Insekten. Zoomorphology 87: 51–64.

    Google Scholar 

  • Hasenfuss, I. (1978) Ãœber das Haften von Insekten an glatten Flächen – Herkunft der Adhäsionsflüssigkeit. Zool. Jahrb. Anat. 99: 115–116.

    Google Scholar 

  • Hasenfuss, I. (1999) The adhesive devices in larvae of Lepidoptera (Insecta, Pterygota). Zoomorphology 119: 143–162.

    Google Scholar 

  • Hassenstein, B., and Hustert, R. (1999) Hiding responses of locusts to approaching objects. J. Exp. Biol. 202: 1701–1710.

    PubMed  Google Scholar 

  • Heming, B. S. (1971) Functional morphology of the thysanopteran pretarsus. Can. J. Zool. 49: 91–108.

    PubMed  CAS  Google Scholar 

  • Heming, B. S. (1972) Functional morphology of the pretarsus in larval Thysanoptera. Can. J. Zool. 50: 751–766.

    Google Scholar 

  • Hiller, U. (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z. Morphol. Tiere 62: 307–362.

    Google Scholar 

  • Homann, H. (1957) Haften Spinnen an einer Wasserhaut? Naturwissenschaften 44: 318–319.

    Google Scholar 

  • Huber, G., Gorb, S.N., Spolenak, R., and Arzt, E. (2005a) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol. Lett. 1: 2–4.

    PubMed  Google Scholar 

  • Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S.N., and Arzt, E. (2005b) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. PNAS 102: 16293–16296.

    PubMed  CAS  Google Scholar 

  • Ishii, S. (1987) Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) on a vertically smooth surface. Appl. Ent. Zool. 22: 222–228.

    Google Scholar 

  • Jarau, S., Hrncir, M., Zucchi, R., and Barth, F.G. (2005) Morphology and structure of the tarsal glands of the stingless bee Melipona seminigra. Naturwiss. 92: 147–150.

    PubMed  CAS  Google Scholar 

  • Jiao, Y., Gorb, S., and Scherge, M. (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J. Exp. Biol. 203: 1887–1895.

    PubMed  CAS  Google Scholar 

  • Jordan, K. (1888) Anatomie und Biologie der Physapoda.Z. wiss. Zool. 47: 541–620.

    Google Scholar 

  • Kendall, K. (1975) Thin-film peeling – the elastic term. J. Phys. D: Appl. Phys. 8: 1449–1452

    Google Scholar 

  • Kendall, K. (2001) Molecular Adhesion and its Applications. New York: Kluwer Academic Publishers.

    Google Scholar 

  • Kendall, M.D. (1970) The anatomy of the tarsi of Schistocerca gregaria ForskÃ¥l. Z. Zellforsch. 109: 112–137.

    PubMed  CAS  Google Scholar 

  • Kesel, A.B., Martin, A., and Seidl, T. (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J. Exp. Biol. 206: 2733–2738.

    PubMed  CAS  Google Scholar 

  • Kosaki, A., and Yamaoka, R. (1996) Chemical composition of footprints and cuticula lipids of three species of lady beetles. Jpn. J. Appl. Entomol. Zool. 40: 47–53.

    CAS  Google Scholar 

  • Kubow, T.M., and Full, R.J. (1999) The role of the mechanical system in control: a hypothesis of self-stabilization in hexapodal runners. Phil. Trans. R. Soc. Lond. B 354: 849–862.

    Google Scholar 

  • Langer, M.G., Ruppersberg, J.P., and Gorb, S. (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc. R. Soc. Lond. B 271: 2209–2215.

    Google Scholar 

  • Lees, A.M., and Hardie, J. (1988) The organs of adhesion in the aphid Megoura viciae. J. Exp. Biol. 136: 209–228.

    Google Scholar 

  • Maderson, P.F.A. (1964) Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203: 780–781.

    Google Scholar 

  • Manton, S.M. (1972) The evolution of arthropodan locomotory mechanisms. Part 10. Locomotory habits, morphology and evolution of hexapod classes. Zool. J. Linn. Soc. 51: 203–400.

    Google Scholar 

  • Mill, P.J., and Pill, C.E.J. (1981) The structure and physiology of the tarso-pretarsal chordotonal organ on the larva of Anax imperator Leach (Anisoptera: Aescchnidae). Odonatologica 10: 29–37.

    Google Scholar 

  • Nachtigall, W. (1996) Locomotory behaviour in a population of the tiger beetle species Cicindella hybrida on a small, hot, sandy area (Coleoptera, Cicindellidae). Entomol. Gener. 20: 241–248.

    Google Scholar 

  • Neff, D., Frazier, S.F., Quimby, L., Wang, R.-T., and Zill, S. (2000) Identification of resilin in the leg of cockroach, Periplaneta americana: confirmation by a simple method using pH dependence of UV fluorescence. Arthr. Struct. and Devel. 29: 75–83.

    CAS  Google Scholar 

  • Niederegger, S., and Gorb, S. (2003) Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J. Insect Physiol. 49: 611–620.

    PubMed  CAS  Google Scholar 

  • Niederegger, S., Gorb, S., and Jiao, Y. (2002) Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J. Comp. Physiol. A 187: 961–970.

    Google Scholar 

  • Nielsen, E.S., and Common, I.F.B. (1991) Lepidoptera. In: The Insects of Australia, New York: Cornell University Press, pp. 817–916.

    Google Scholar 

  • Ohler, A. (1995) Digital pad morphology in torrent-living Ranid frogs. Asiat. Herpetol. Res. 6: 85–96.

    Google Scholar 

  • Orivel, J., Malherbe, M.C., and Dejean, A. (2001) Relationships between pretarsus morphology and arboreal life in poberine ants of the genus Pachycondyla (Formicidae: Ponerinae). Ann. Entomol. Soc. Amer. 94: 449–456.

    Google Scholar 

  • Peressadko, A., and Gorb, S.N. (2004a) When less is more: experimental evidence for tenacity enhancement by division of contact area. J. Adhes. 80: 1–15.

    Google Scholar 

  • Peressadko, A., and Gorb, S.N. (2004b) Surface profile and friction force generated by insects. In: Fortschritt-Berichte VDI. Eds. I. Boblan and R. Bannasch. Düsseldorf: VDI Verlag, vol. 249, pp. 257–261.

    Google Scholar 

  • Perez Goodwyn, P.J., Peressadko, A., Schwarz, H., Kastner, V., and Gorb, S. (2006) Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). J. Comp. Physiol. A 192: 1233–1243.

    Google Scholar 

  • Radnikov, G., and Bässler, U. (1991) Function of a muscle whose apodeme travels through a joint moved by other muscles: why the retractor unguis muscle in stick insects is tripartite and has no antagonist. J. Exp. Biol. 157: 87–99.

    Google Scholar 

  • Röder, G. (1986) Zur Morphologie des Praetarsus der Diptera und Mecoptera. Zool. Jahrb. Abt. Anat. Ontog. Tiere 114: 465–502.

    Google Scholar 

  • Roth, L. M., and Willis, E. R. (1952) Tarsal structure and climbing ability of cockroaches. J. Exp. Biol. 119: 483–517.

    Google Scholar 

  • Runion, H.J., and Usherwood, P.N.R. (1968) Tarsal receptors and leg reflexes in the locust and grasshopper. J. Exp. Biol. 49: 421–436.

    Google Scholar 

  • Scherge, M., and Gorb, S.N. (2001) Biological Micro- and Nanotribology. Berlin: Springer.

    Google Scholar 

  • Schulmeister, S. (2003) Morphology and evolution of the tarsal plantulae in Hymenoptera (Insecta), focussing on the basal lineages. Zool Scr. 32: 153–172.

    Google Scholar 

  • Schwarz, H., and Gorb, S. (2003) Method of platinum-carbon coating of ultrathin sections for transmission and scanning electron microscopy: An application for study of biological composites. Microsc. Res. Techn. 62: 218–224.

    CAS  Google Scholar 

  • Seifert, P., and Heinzeller, T. (1989) Mechanical, sensory and glandular structures in the tarsal unguitractor apparatus of Chironomus riparius (Diptera, Chironomidae). Zoomorphology 109: 71–78.

    Google Scholar 

  • Slifer, E. H. (1950) Vulnerable areas on the surface of the tarsus and pretarsus of the grasshopper (Acrididae, Orthoptera) with special reference to the arolium. Ann. Entomol. Soc. Amer. 43: 173–188.

    CAS  Google Scholar 

  • Snodgrass, R. E. (1956) Anatomy of the Honey Bee. New York: Comstock Publishing Associates.

    Google Scholar 

  • Stork, N. E. (1980) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae, Coleoptera) on a variety of surfaces. J. Exp. Biol. 88: 91–107.

    Google Scholar 

  • Stork, N. E. (1983) The adherence of beetle tarsal setae to glass. J. Nat. Hist. 17: 583–597.

    Google Scholar 

  • Tanaka, Y., and Hisada, M. (1980) the hydraulic mechanism of the predatory strike in dragonfly larvae. J. Exp. Biol. 88: 1–19.

    Google Scholar 

  • Varenberg, M., and Gorb, S.N. (2008) Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 20: 1–4.

    Google Scholar 

  • Vötsch, W., Nicholson, G., Müller, R., Stierhof, Y.-D., Gorb, S., and Schwarz, U. (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem. Mol. Biol. 32: 1605–1613.

    PubMed  Google Scholar 

  • Weber, H. (1933) Lehrbuch der Entomologie. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Wiese, K., and Schmidt, K. (1974) Mechanorezeptoren im Insektentarsus. Die Konstruktion des tarsalen Scolopidialorgans bei Notonecta (Hemiptera, Heteroptera). Z. Morphol. Tiere 79: 47–63.

    Google Scholar 

  • Wigglesworth, V.B. (1987) How does a fly cling to the under surface of a glass sheet? J. Exp. Biol. 129: 373–367.

    Google Scholar 

  • Zielinska, T. (2001) Synthesis of control system – gait implementation problems. In: CLAWAR 2001: 4th Internat. Conference on Climbing and Walking Robots. London: Professional Engineering Publishing, pp. 489–496.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Gladun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gladun, D., Gorb, S.N., Frantsevich, L.I. (2009). Alternative Tasks of the Insect Arolium with Special Reference to Hymenoptera. In: Gorb, S.N. (eds) Functional Surfaces in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6695-5_4

Download citation

Publish with us

Policies and ethics