Skip to main content

Benefits and Limitations of Protein Hydrolysates as Components of Serum-Free Media for Animal Cell Culture Applications

Protein Hydrolysates in Serum Free Media

  • Chapter
  • First Online:

Abstract

Increased understanding of influential factors for the cultivation of animal cells, combined with heightened regulatory concern over potential transmission of adventitious contaminants associated with serum and other animal-derived components, has elevated interest in using protein hydrolysates as serum replacements or nutrient supplements. This paper reviews the chemistry and biology of various hydrolysates derived from animal, plant and microbial sources. It provides specific examples of a beneficial selection of plant and yeast hydrolysates as ingredients of serum-free nutrient formulations for bioproduction applications of cultured mammalian and insect cells. Strategies for customizing and optimizing nutrients for specialized applications and general benefits and limitations of protein hydrolysates for biopharmaceutical production are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anborski RL, Moskowitz M (1968) The effects of low molecular weight materials derived from animal tissues on the growth of animal cells in vitro. Exp Cell Res 53:117–128

    Article  Google Scholar 

  • Auricchio S, De Ritis G, Vincenzi M De, Latte F, Maiuri L, Pino A, Raia V, Silano V (1987) Prevention by mannan and other sugars of in vitro damage of rat fetal small intestine induced by cereal prolamin peptides toxic for human celiac intestine. Pediatr Res 22:703–707

    Article  CAS  Google Scholar 

  • Bare G, Charlier H, De Nijs L, Verhoeye F, Schneider YJ, Agathos S, Thonart P (2001) Effects of rice protein hydrolysate on growth of CHO cells and production of Human Interferon-γ in a serum-free medium. In: Lindner-Olsson E, Chatzissavidou N, Luellau E (eds) Animal cell technology: from target to market. Kluwer, Netherlands, pp 217–219

    Chapter  Google Scholar 

  • Barnes D, Sato G (1980) Methods for growth of cultured cells in serum-free medium. Anal Biochem 102:255–270

    Article  Google Scholar 

  • Borys MC, Hughes KD, Ryan JM (2001) The effects of different plant protein hydrolysates on SP2/O cells expressing recombinant Pro-urokinase. In Vitro Cell Dev Biol Anim 37(3, Part II):VT-1000

    Google Scholar 

  • Burteau CC, Verhoeye FR, Mols JF, Ballez J-S, Agathos SN, Schneider YJ (2003) Fortification of a protein-free cell culture medium with plant peptones improves cultivation and productivity of an interferon –γ-producing CHO cell line. In Vitro Cell Dev Biol Anim 39:291–296

    Article  CAS  Google Scholar 

  • Chua F, Oh SKW, Yap M, Teo WK (1994) Enhanced IgG production in eRDF media with and without serum: A comparative study. Methods 167:109–119

    CAS  Google Scholar 

  • Cohen S, Snyder JC, Mueller JH (1941) Factors concerned in the growth of corynrbacterium diphtheriae from minute inocula. J Bacteriol 41:581–591

    CAS  Google Scholar 

  • Coleman WH, Roberts WK (1982) Inhibitors of animal cell-free protein synthesis from grains. Biochim Biophys Acta 696:239–244

    Article  CAS  Google Scholar 

  • Cordier-Bussat M, Bernard C, Haouche S, Roche C, Abello J, Chayvialle J-A, Cuber JC (1997) Peptones stimulate cholescystokinin secretion and gene transcription in the intestinal cell line STC-1. Endocrinology 138:1137–1144

    Article  CAS  Google Scholar 

  • Demain AL, Hendlin D, Newkirk J (1959) Role of fatty acids in the growth stimulation of Sarcina species by vitamin-free casein digest. J Bacteriol 78:839–843

    CAS  Google Scholar 

  • Deparis V, Durrieu C, Schweizer M, Marc I, Goergen JL, Chevalot I, Marc A (2003) Promoting effect of rapeseed proteins and peptides on Sf9 insect cell growth. Cytotechnology 42(2):75–85

    Article  CAS  Google Scholar 

  • Fardon JC, Poydock SME, Tsuchiya Y (1973) The effect of a yeast extract (PCO) on the mitotic activity of neoplastic and normal cells in vitro. J Surg Oncol 5:307–314

    Article  CAS  Google Scholar 

  • Fassolitis AC, Larkin EP, Novelli RM (1981) Serum substitute in epithelial cell culture media: Nonfat dry milk filtrate. Appl Environ Microbiol 42:200–203

    CAS  Google Scholar 

  • Franek F, Hohenwarter O, Katinger H (2000) Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cell cultures. Biotechnol Prog 16:688–692

    Article  CAS  Google Scholar 

  • Ganju N, Eastman A (2003) Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Diff 10(6):652–661

    Article  CAS  Google Scholar 

  • Heidemann R, Zhang C, Qi H, Rule JL, Rozales C, Park S, Chuppa S, Ray M, Michaels J, Konstantinov K, Naveh D (2000) The use of peptones as medium additives for the production of a recombinant Therapeutic protein in High-Density cultures of mammalian cells. Cytotechnology 32:157–167

    Article  CAS  Google Scholar 

  • Iscove NN, Melchers F (1978) Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysacchride reactive ß Lymphocytes. J Exp Med 147:923–933

    Article  CAS  Google Scholar 

  • Jan DC-H, Jones SJ, Emery AN, Al-Rubeai M (1994) Peptone, a low cost growth-promoting nutrient for intensive animal cell culture. Cytotechnology 16:17–26

    Article  CAS  Google Scholar 

  • Jayme DW (1999) An animal origin perspective of common constituents of serum-free medium formulations. In: Brown F, Cartwright T, Horaud F, Speiser JM (eds) Animal sera, animal sera derivatives and substitutes used in the manufacture of pharmaceuticals: viral safety and regulatory aspects, vol 99, Dev Biol Stand. Karger, Switzerland, pp 181–187

    Google Scholar 

  • Jayme D, Tribby I, Spendlove R, Peterson W (1990) Fetal bovine serum: proposed guideline. National Committee for Clinical Laboratory Standards: Subcommittee Report, vol 10, pp 1–38

    Google Scholar 

  • Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M (1998) Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem 62(1):145–147

    Article  CAS  Google Scholar 

  • Katsuta H, Takaoka T (1973) Cultivation of cells in protein and lipid-free synthetic media. Meth Cell Biol 6:1–42

    Article  CAS  Google Scholar 

  • Katsuta H, Takaoka T (1977) Improved synthetic media suitable for tissue culture of various mammalian cells. Meth Cell Biol 14:145–158

    Article  Google Scholar 

  • Keay L (1976) Autoclavable low cost serum-free cell culture media: the growth of established cell lines and production of viruses. Biotechnol Bioeng 18(3):363–382

    Article  Google Scholar 

  • Merten OW (1999) Safety issues of animal products used in serum-free medium. In: Brown F, Cartwright T, Horaud F, Speiser JM (eds) Animal sera, animal sera derivatives and substitutes used in the manufacture of pharmaceuticals: viral safety and regulatory aspects, vol 99, Dev Biol Stand. Karger, Switzerland, pp 167–180

    Google Scholar 

  • Merten OW (2002) Virus contamination of cell cultures – a biotechnological view. Cytotechnology 39:91–116

    Article  CAS  Google Scholar 

  • Merten OW, Kallel H, Manuguerra JC, Tardy-Panit M, Crainic R, Delpeyroux F, Van der Werf S, Perrin P (1999) The new medium MDSS2N, free of any animal protein supports cell growth and production of various viruses. Cytotechnology 30(1–3):191–201

    Article  CAS  Google Scholar 

  • Mizrahi A (1977) Primatone R.L in mammalian cell culture media. Biotech Bioeng 19:1557–1561

    Article  CAS  Google Scholar 

  • Mizrahi A, Lazar A (1991) Media for cultivation of animal cells: an overview. In: Sasaki R, Ikura K (eds) Animal cell culture production of biologicals. Kluwer, Netherlands, pp 159–180

    Chapter  Google Scholar 

  • Mizrahi A, Shahar A (1977) Partial replacement of serum by vegetable proteins in BHK culture medium. J Biol Stand 5:327–332

    Article  CAS  Google Scholar 

  • Murakami H (1984) Serum-free cultivation of plasmacytoies & hybridomas. In: Barnes DW, Sirbasku DA, Sato GH (eds) Methods for serum-free culture of neuronal & Lymphoid cells. Alan R Liss, New York, pp 197–206

    Google Scholar 

  • Murakami H, Masui H, Sato GH (1982) Suspension culture of hybridoma cells in serum-free medium: Soybean lipids as essential components. In: Cold Spring Harbor conferences on cell proliferation, growth of cells in hormonally defined media, vol 9, pp 711–715

    Google Scholar 

  • Nagaoka S, Miwa K, Eto M, Kuzuya Y, Hori G, Yamamoto K (1999) Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and Caco-2 cells. J Nutr 129:1725–1730

    CAS  Google Scholar 

  • Nemoz-Gaillard E, Bernard C, Abello J, Cordier-Bussat M, Chayvialle J-A, Cuber J-C (1998) Regulation of cholecystokinin secretion by peptones and peptidomimetic antibiotics in STC-1 cells. Endocrinology 139:932–938

    Article  CAS  Google Scholar 

  • Nyberg GB, Balcarcel R, Follstad BD, Stephanopoulos G, Wang DIC (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng 62(3):324–335

    Article  CAS  Google Scholar 

  • Pasupuleti VK (2000) Influence of protein hydrolysates on the growth of hybridomas and the production of monoclonal antibodies. Presented at The Waterside Conference, Miami, FL

    Google Scholar 

  • Price PJ, Evege EK (1997) Serum-free medium without animal components for virus production. Focus 19:67–69

    Google Scholar 

  • Price P, Evege E, Nestler L, Grefrath P, Naumovic B, Fatunmbi F, Jayme D (2002) A versatile serum-free medium for kidney epithelial cell growth and virus production. Focus 24:24–28

    Google Scholar 

  • Radominski R, Hassett R, Dadey B, Fike R, Cady D, Jayme D (2001) Production-scale qualification of a novel cell culture medium format. BioPharm 14(7):34–39

    CAS  Google Scholar 

  • Reuveny S, Bino T, Rosenberg H, Traub A, Mizrahi A (1980) Pilot plant production of human lymphoblastoid interferon. Dev Biol Stand 46:281–288

    CAS  Google Scholar 

  • Reuveny S, Lazar A, Minai M, Feinstein S, Grosfeld H, Traub A, Mizrahi A (1982) Large-scale production of human (Namalva) interferon. Ann Virol 133E:191–199

    CAS  Google Scholar 

  • Rival SG, Fornaroli S, Boeriu CG, Wichers HJ (2001) Caseins and casein hydrolysates. 1. Lipoxy-genase inhibitory properties. J Agric Food Chem 49(1):287–294

    Article  CAS  Google Scholar 

  • Sanes JA, Rubenstein JLR, Nicolas J-F (1986) Use of recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J 5:3133–3142

    CAS  Google Scholar 

  • Schlaeger EJ (1996) The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promotor of mammalian cell culture in serum-containing and serum-free media and displays anti-apototic properties. J Immunol Methods 194:191–199

    Article  CAS  Google Scholar 

  • Schlaeger EJ, Foggetta M, Vonach JM, Christensen K (1993) SF-1, a low-cost culture medium for the production of recombinant proteins in baculovirus infected insect cells. Biotechnol Tech 7:183–188

    CAS  Google Scholar 

  • Simpson NH, Wegkamp HBA, Bulthuis BA, Siemensma AD, Martens DE (2001) Metabolic shifts in hybridoma cells utilizing wheat peptides. In: Lindner-Olsson E, Chatzissavidou N, Luellau E (eds) Animal cell technology: from target to market. Kluwer, Dordrecht, pp 183–184

    Chapter  Google Scholar 

  • Steiner KS, Klagsbrun M (1981) Serum-free growth of normal and transformed fibroblasts in milk: Differential requirements of fibronectin. J Cell Biol 88:294–300

    Article  Google Scholar 

  • Sung YH, Lim SW, Chung JY, Lee GM (2004) Yeast hydrolysate as a low-cost additive to serum-free medium for the production of human thrombopoietin in suspension cultures of Chinese hamster ovary cells. Appl Microbiol Biotechnol 63(5):527–536

    Article  CAS  Google Scholar 

  • Taylor WG, Parshad R (1977) Peptones as serum substitutes for mammalian cells in culture. Meth Cell Biol 15:421–434

    Article  CAS  Google Scholar 

  • Terada S, Nishimura T, Sasaki M, Yamada H, Miki M (2002) Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including hybridoma. Cytotechnology 40:3–12

    Article  CAS  Google Scholar 

  • Thompson GA Jr, Okuyama H (2000) Lipid –linked proteins of plants. Prog Lipid Res 39:19–39

    Article  CAS  Google Scholar 

  • Tsujimoto K, Takagi H, Takahashi M, Yamada H, Nakamori S (2001) Cryoprotective effect of the serine-rich repetitive sequence in silk protein sericin. J Biochem 129(6):979–986

    Article  Google Scholar 

  • Velez D, Reuveny S, Miller L, Macmillan JD (1986) Kinetics of antibody production in low serum growth medium. J Immunol Methods 86:45–52

    Article  CAS  Google Scholar 

  • Verhoeye F, Burteau C, Mols J, Ballez J-S, Bare G, Thonart P, Bastin G, Charlier H, Agathos S, Schneider YJ (2001) Use of plant peptone-containing serum-free media for the cultivation of CHO cells in suspension and on microcarriers. In: Lindner-Olsson E, Chatzissavidou N, Luellau E (eds) Animal cell technology: from target to market. Kluwer, Dordrecht, pp 362–364

    Chapter  Google Scholar 

  • Wessman SJ, Levings RL (1999) Benefits and risks due to animal serum used in cell culture production. In: Brown F, Cartwright T, Horaud F, Speiser JM (eds) Animal sera, animal sera derivatives and substitutes used in the manufacture of pharmaceuticals: viral safety and regulatory aspects, vol 99, Dev Biol Stand. Karger, Switzerland, pp 3–8

    Google Scholar 

  • Wyss C (1979) Cloning of Drosophila cells: effect of vitamins and yeast extract components. Somat Cell Genet 5(1):23–28

    Article  CAS  Google Scholar 

  • Yamada K, Nakajima H, Ikeda I, Shirahata S, Enomoto A, Kaminogawa S, Murakami H (1991) Stimulation of proliferation and immunoglobulin production by various types of caseins. In: Sasaki R, Ikura K (eds) Animal cell culture production of biologicals. Kluwer, Netherlands, pp 267–274

    Chapter  Google Scholar 

  • Yamane I, Murakami O (1973) 6, 8-Dihydroxypurine: a novel growth factor for mammalian cells in vitro, isolated from a commercial peptone. J Cell Physiol 81:281–284

    Article  CAS  Google Scholar 

  • Yoshikawa M, Takahashi M, Yang S (2003) Delta opioid peptides derived from plant proteins. Curr Pharm Des 9(16):1325–1330

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Steve Gorfien, Mary Lynn Tilkins, Douglas Danner and Philip Grefrath for data used in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliet Lobo-Alfonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lobo-Alfonso, J., Price, P., Jayme, D. (2008). Benefits and Limitations of Protein Hydrolysates as Components of Serum-Free Media for Animal Cell Culture Applications. In: Pasupuleti, V., Demain, A. (eds) Protein Hydrolysates in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6674-0_4

Download citation

Publish with us

Policies and ethics