Argumentation in Science Education: An Overview

  • Laurence Simonneaux
Part of the Science & Technology Education Library book series (CTISE, volume 35)

This chapter examines some dimensions of argumentation in socio-scientific contexts from a perspective seeking to develop students' understanding of the interdependence between science and society. The notion of socio-scientific issues as social dilemmas rooted in scientific domains and the notion of “socially acute questions” are discussed in the first section. The goal of improving students' argumentation skills on socio-scientific issues poses particular challenges, which are examined in the second section. In the third section, the influence of different strategies on students' argumentation about socio-scientific issues is traced. Organising debates on these issues raises many difficulties for teachers for example the management of uncertainty and controversies. The influence of teachers' cultural and disciplinary identity and the question of neutrality are the focus of the fourth section.

Keywords

Catalysis Fishing Kelly Defend Stake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikenhead, G. S. (1985). Collective decision making in the social context of science. Science Education, 69, 453–475.CrossRefGoogle Scholar
  2. Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. Columbia, NY: Teachers’ College Press.Google Scholar
  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211.CrossRefGoogle Scholar
  4. Albe, V. (2005). Un jeu de rôle sur une controverse socio-scientifique actuelle: Une stratégie pour favoriser la problématisation? Aster, 40, 67–94.Google Scholar
  5. Albe, V., & Simonneaux, L. (2002). Enseigner des questions scientifiques socialement vives dans l’enseignement agricole. Aster, 34, 131–156.CrossRefGoogle Scholar
  6. Barnes, D., & Todd, F. (1997). Communication and learning in small groups. London: Routledge & Kegan Paul.Google Scholar
  7. Bell, R. L., & Lederman, N. G. (2003). Understandings of the nature of science and decision making on science and technology based issues. Science Education, 87, 352–377.CrossRefGoogle Scholar
  8. Breton, P. (1996) L’argumentation dans la communication. Paris: Ed. La Découverte.Google Scholar
  9. Bronckart, J.-P. (1996). Activité langagière, textes et discours: Pour un interactionnisme socio-discursif. Paris: Delachaux & Niestlé.Google Scholar
  10. Chalghoumi, T. N., & Simonneaux, L. (2006). Analyse des arguments d’élèves tunisiens sur le dépistage prénatal de la drépanocytose. Aster, 42, 159–186.Google Scholar
  11. Cole, A. L. (1990) Personal theories of teaching: Development in formative years. The Alberta Journal of Educational Research, 36 (3). 203–222.Google Scholar
  12. Collins, A., Brown, J. S., & Newman, S. E (1989) Cognitive apprenticeship: Teaching the crafts of reading, writing and mathematics. In L. Resnick (Ed.), Knowing, learning and instruction. Essays in honor of Robert Glaser (pp. 453–494). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  13. Desautels, J., & Larochelle, M. (1994). Etude de la pertinence et de la viabilité d’une stratégie de formation à l’enseignement des sciences: Rapport de recherche. Québec, Canada: Université Laval.Google Scholar
  14. Dolz, J., & Schneuwly, B. (1998). Pour un enseignement de l’oral (p. 37). Paris: ESF.Google Scholar
  15. Dubar, C. (1991). La socialisation: Construction des identités sociales et professionnelles. Paris: Armand Colin.Google Scholar
  16. Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88, 915–933.CrossRefGoogle Scholar
  17. Fleming, R. (1986). Adolescent reasoning in socio-scientific issues. Part II: Nonsocial cognition. Journal of Research in Science Teaching, 23, 689–698.CrossRefGoogle Scholar
  18. Fourez, G. (1997). Qu’entendre par îlot de rationalité et par îlot interdisciplinaire de rationalité, Aster, 25, 217–225.Google Scholar
  19. Gayford, C. (2002). Controversial environmental issues: A case study for the professional development of science teachers. International Journal of Science Education, 24 (11), 1191–1200.CrossRefGoogle Scholar
  20. Grace, M., & Ratcliffe, M. (2002). The science and values that young people draw upon to make decisions about biological conservation issues. International Journal of Science Education, 24 (11), 1157–1169.CrossRefGoogle Scholar
  21. Grize, J. B. (1996). Logique naturelle et communication. Paris: PUF.Google Scholar
  22. Henderson, J., & Lally, V. (1988). Problem solving and controversial issues in biotechnology. Journal of Biological Education, 22, 144–150.Google Scholar
  23. Hogan, K. (2002). Small groups’ ecological reasoning while making an environmental management decesion. Journal of Research in Science Teaching, 39, 341–368.CrossRefGoogle Scholar
  24. Jiménez-Aleixandre, M. P., & Pereiro Muñoz, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24 (11), 1171–1190.CrossRefGoogle Scholar
  25. Jiménez-Aleixandre M. P., Agraso, M. F., & Eirexas, F. (2004). Scientific authority and empirical data in argument warrants about the Prestige oil spill. Paper presented at the National Association for Research in Science Teaching (NARST) annual meeting, Vancouver, Canada, April.Google Scholar
  26. Jiménez-Aleixandre, M. P., Bugallo Rodriguez, A., & Duschl, R. A. (2000). “Doing the lesson” or “Doing science”: Argument in high school genetics. Science Education, 84, 757–792.CrossRefGoogle Scholar
  27. Jiménez-Aleixandre, M. P., Eirexas, F., & Agraso, M. F. (2006). Use of evidence in arguments about a socio scientific issue by 12th grade students: Choices about heating systems and energy sources. Paper presented at the National Association for Research in Science Teaching (NARST) annual meeting, San Francisco, April.Google Scholar
  28. Kelly, G. J., Druker, S., & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessment with argumentation analysis. International Journal of Science Education, 20, 849–871.CrossRefGoogle Scholar
  29. Kelly, T. (1986). Discussing controversial issues: Four perspectives on the teacher’s role. Theory and Research in Social Education, 14, 113–138.Google Scholar
  30. Kolstø, S. D. (2000). Consensus projects: Teaching science for citizenship. International Journal of Science Education, 22, 6, 645–664.CrossRefGoogle Scholar
  31. Kolstø, S. D. (2001a). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85, 291–310.CrossRefGoogle Scholar
  32. Kolstø, S. D. (2001b). To trust or not to trust… pupils’ ways of judging information encountered in a socioscientific issue. International Journal of Science Education, 23, 877–901.CrossRefGoogle Scholar
  33. Kolstø, S. D. (2004). Students’ argumentation: Knowledge, values and decisions. In E. K. Henriksen & M. Odegaard (Eds.), Naturfagenes didaktikk—en disciplin i forandring? Det7. nordiske forskersymposiet om undervisning i naturfag i skolen (pp. 63–78). Kristiansand, Norway: Hoyskoleforlaget AS.Google Scholar
  34. Kolstø, S. D. (2005).The relevance of values for coping with socioscientific issues in science education. Paper presented at the ESERA conference 2005 in Barcelona, Spain.Google Scholar
  35. Korpan, C. A., Bisanz, G. L., Bisanz, J., & Henderson, J. M. (1997). Assessing literacy in science: Evaluation of scientific news briefs. Science Education, 81, 515–532.CrossRefGoogle Scholar
  36. Kortland, K. (1996). An STS case study about students’ decision making on the waste issue. Science Education, 80, 673–689.CrossRefGoogle Scholar
  37. Legardez, A., & Alpe, Y. (2001). La construction des objets d’enseignements scolaires sur des questions socialement vives: Problématisation, stratégies didactiques et circulations des savoirs, 4ème Congrès AECSE Actualité de la recherche en éducation et formation, Lille, France, September.Google Scholar
  38. Levinson, R., & Turner, S. (2001). Valuable lessons engaging with the social context of science in schools. London: Wellcome Trust.Google Scholar
  39. Lewis, J., Leach, J., & Wood-Robinson, C. (1999). Attitude des jeunes face à la technologie génétique. In L. Simonneaux (Ed.), Les biotechnologies à l’école (pp. 65–95). Dijon, France: Educagri éditions.Google Scholar
  40. Lewis, J., & Leach, J. (2006). Discussion of Socio-scientific Issues: The role of science knowledge. International Journal of Science Education, 28, 11, 1267–1288.CrossRefGoogle Scholar
  41. Morin, E. (1998). Pourquoi et comment articuler les savoirs? Paris: PUF.Google Scholar
  42. Osborne, J., Erduran, S., Simon, S., & Monk, M. (2001). Enhancing the quality of argument in school science. School Science Review, 82 (301), 63–70.Google Scholar
  43. Oulton, C., Dillon, J., & Grace, M. (2004). Reconceptualizing the teaching of controversial issues. International Journal of Science Education, 26 (4), 411–424.CrossRefGoogle Scholar
  44. Patronis, T., Potari, D., & Spiliotopoulou, V. (1999). Students’ argumentation in decision-making on a socio-scientific issue: Implication for teaching. International Journal of Science Education, 21, 745–754.CrossRefGoogle Scholar
  45. Reiss, M. (1993). Science education for a pluralist society. Buckingham, UK: Open University Press.Google Scholar
  46. Reiss, M. J. (1999). Teaching ethics in science. Studies in Science Education, 34, 115–140.CrossRefGoogle Scholar
  47. Resnick, L. B., Salmon, M., Zeitz, C. M., Wathen, S. H., & Holowchack, N. (1993). Reasoning in conversation. Cognition and Instruction, 11 (3&4), 347–364.CrossRefGoogle Scholar
  48. Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41 (5), 513–536.CrossRefGoogle Scholar
  49. Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28 (12), 1463–1488.CrossRefGoogle Scholar
  50. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issued: Construal and resolution of genetic engineering dilemmas. Science Education, 88, 4–27.CrossRefGoogle Scholar
  51. Sadler, T. D., &, Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socio-scientific decision making. Journal of research in Science Teaching, 42 (1), 112–138.CrossRefGoogle Scholar
  52. Sadler, T. D., Barab, S. A., & Scott, B. (2006). What do students gain by engaging in socioscientific inquiry? Paper presented at the annual meeting of the National Association for Research in Science Teaching, San Francisco, CA, April 3–5.Google Scholar
  53. Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004c). Student conceptualisations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26 (4), 387–410.CrossRefGoogle Scholar
  54. Sainsaulieu, R. (1996). Identités et relations au travail, in identités collectives et changements sociaux. Education Permanente, 128, 187–192.Google Scholar
  55. Simonneaux, L. (2001). Role-play or debate to promote students’ argumentation and justification on an issue in animal transgenesis. International Journal of Science Education, 23 (9), 903–928.CrossRefGoogle Scholar
  56. Simonneaux, L., & Simonneaux, J. (2005). Argumentation sur des questions socio-scientifiques. Didaskalia, 27, 79–108.Google Scholar
  57. Sóñora, F., Garcia Rodeja, I., & Brañas Perez, M. P. (2001). Discourse analysis: pupils’ discussions of soil science. Proceedings of the 3rd ERIDOB Conference (pp. 313–326). Santiago de Compostela, Spain: University of Santiago de Compostela.Google Scholar
  58. Tytler, R., Duggan, S., & Gott, R. (2001). Dimensions of evidence, the public understanding of science and science education. International Journal of Science Education, 23, 815–832.CrossRefGoogle Scholar
  59. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  60. Tutiaux-Guillon, N., & Mousseau, M. J. (1998). Les jeunes et l’histoire. Paris: INRP.Google Scholar
  61. Vygotsky, L. S. (1985). Pensée et langage. Paris: Messidor.Google Scholar
  62. Walton, D. N. (1996) Argumentation schemes for presumptive reasoning. Mahwah, N.J.: Lawrence Erlbaum.Google Scholar
  63. Zeidler, D. L., & Schafer, L. E. (1984). Identifying mediating factors of moral reasoning in science education. Journal of Research in Science Teaching, 21, 1–15.CrossRefGoogle Scholar
  64. Zeidler, D. L., Walker, K., Ackett, W., & Simmons, M. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 27, 771–783.Google Scholar
  65. Zohar, A., & Nemet, F. (2002). Fostering students’ argumentation skills through bioethical dilemmas in genetics. Journal of Research in Science Teaching, 39, 35–62.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2007

Authors and Affiliations

  • Laurence Simonneaux
    • 1
  1. 1.École Nationale de Formation Agronomique de Toulouse-AuzevilleCastanet Tolosan cedexFrance

Personalised recommendations