Skip to main content

Argumentation in Science Education: An Overview

  • Chapter

Part of the book series: Science & Technology Education Library ((CTISE,volume 35))

Charles Darwin once described On the Origin of Species as “one long argument”. This sentence can be viewed as embodying several of the different dimensions of argumentation discussed in this book. On the one hand, it provides evidence, coming from someone with undisputable authority, on argument being an integral part of the construction of scientific knowledge. On the other hand, when applied to the outstanding piece of scientific thinking that is On the Origin of Species, the description combines two aspects of argumentation. The first aspect relates to the justification of knowledge claims, by marshalling converging lines of reasoning (see Kelly, Regev, & Prothero, this book), theoretical ideas and empirical evidence toward a claim. Darwin weaved together population theory from Malthus, or uniformitarianism from Lyell, with empirical data gathered in his voyage to Central and South America in his bold claim of the theory of natural selection. A second aspect of argumentation has to do with argumentation as persuasion, in Darwin's case as an attempt to convince an audience, composed both of scientists and of the general public, that the animals and plants had changed, that the species living on Earth descended from other species instead of having being created all at a time. Darwin was well aware that the task of persuading his contemporaries was not an easy one, such awareness being one of the reasons for delaying the publication of his book for about twenty years. In fact a joint presentation by Darwin and Wallace in the Linnean Society in 1858 stirred little interest, and the president of the Society summarised the year as one that “has not indeed been marked by any of those striking discoveries which at once revolutionize science” (Beddall, 1968, pp 304–305). However, one year later, the publication of Darwin's book launched a great controversy, corresponding yet to another aspect of argumentation, as debate among two parties with contrasting positions on a subject.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.

    Google Scholar 

  • Anscombre, J-C., & Ducrot, O. (1983). L’Argumentation dans la langue. Bruxelles: Mardaga.

    Google Scholar 

  • Arnauld, A., & Nicole, P. (1992). La logique ou l’art de penser. Paris: Gallimard (originally published in 1662). Logic or the art of thinking, 1996. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bakhtin, M. M. (1986). Speech genre and other late essays. Austin, TX: University of Texas Press.

    Google Scholar 

  • Bazerman, C. (1988). Shaping written knowledge: The genre and activity of the experimental article in science. Madison, WI: University of Wisconsin Press.

    Google Scholar 

  • Beddall, B. G. (1968). Wallace, Darwin and natural selection: A study in the development of ideas and attitudes. Journal of the History of Biology, 1, 261–323.

    Article  Google Scholar 

  • Billig, M. (1987). Arguing and thinking: A rhetorical approach to social psychology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Boulter, C., & Gilbert, J. (1995). Argument and science education. In: P. J. M. Costello & S. Mitchell (Eds.), Competing and consensual voices: The theory and practice of argumentation. (pp. 84–98). Clevedon, UK: Multilingual Matters.

    Google Scholar 

  • Brown, A. L., & Campione, J. C. (1990). Communities of learning and thinking, or a context by any other name. In D. Kuhn (Ed.), Developmental perspectives on teaching and learning thinking skills. Contribution to Human Development, 21, 108–126.

    Google Scholar 

  • Brown, A. L., & Palincsar, A. S. (1989). Guided cooperative learning and individual knowledge acquisition. In L. Resnick (Ed.), Knowing, learning and Instruction. Essays in Honor of Robert Glaser (pp. 393–451). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Buty, C., & Plantin, C. (in press). Argumenter en classe de sciences. Lyon: INRP.

    Google Scholar 

  • Carr, W., & Kemmis, S. (1986). Becoming critical. London: The Falmer Press.

    Google Scholar 

  • Chang, C. Y. (2005). Taiwanese science and life technology curriculum standards and earth systems education. International Journal of Science Education, 27(5), 625–638.

    Article  Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing and mathematics. In L. Resnick (Ed.), Knowing, learning and instruction. Essays in honor of Robert Glaser (pp. 453–494). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Curriculum Council of Western Australia. (1998). Curriculum framework. Retrieved on March 26, 2007 from http://www.curriculum.wa.edu.au/pages/council/council00.htm.

  • Department for Education and Skills and Qualifications and Curriculum Authority, England and Wales. (2004). Science. The National Curriculum for England. London: HMSO.

    Google Scholar 

  • Department of Education, South Africa. (2003). National curriculum statement grades 10–12 (General). Physical sciences. Pretoria: Author.

    Google Scholar 

  • Díaz de Bustamante, J., & Jiménez-Aleixandre, M. P. (2000). Communication in the laboratory sessions and sequences of arguments. In I. García-Rodeja, J. Díaz, U. Harms, & M. P. Jiménez-Aleixandre (Eds.), Proceedings 3rd Conference of European Researchers in Didactic of Biology (pp. 247–260). Santiago de Compostela: Universidade de Santiago de Compostela.

    Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.

    Article  Google Scholar 

  • Druker, S. L. (2000). Experimentation in situated learning: Diverse students’ data generation and argumentation strategies in social settings. Paper presented at the annual meeting of NARST, New Orleans, April–May.

    Google Scholar 

  • Duschl, R., & Osborne, J. (2002). Supporting and promoting argumentation discourse. Studies in Science Education, 38, 39–72.

    Article  Google Scholar 

  • Eemeren, F. H. van, & Grootendorst, R. (2004). A systematic theory of argumentation: The pragma-dialectical approach. New York: Cambridge University Press.

    Google Scholar 

  • Eichinger, D. C., Anderson, C. W., Palincsar, A. S., & David, Y. M. (1991). An illustration of the roles of content knowledge, scientific argument, and social norms in collaborative problem solving. Paper presented at the annual meeting of the American Educational Research Association, Chicago.

    Google Scholar 

  • Ennis, R. H. (1992). Critical thinking: What is it? In H. A. Alexander (Ed.), Philosophy of education 1992. Proceedings of the forty-eighth annual meeting of the Philosophy of Education Society (pp. 76–80). Urbana, IL: Philosophy of Education Society.

    Google Scholar 

  • Erduran, S. (2006). Promoting ideas, evidence and argument in initial teacher training. School Science Review, 87(321), 45–50.

    Google Scholar 

  • Erduran, S., Ardac, D., & Yakmaci-Guzel, B. (2006). Learning to teach argumentation: Case studies of preservice secondary science teachers. Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 1–14.

    Google Scholar 

  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88(6), 915–933.

    Article  Google Scholar 

  • Fairclough, N. (1995). Critical discourse analysis. The critical study of language. Harlow, UK: Longman.

    Google Scholar 

  • Finocchiaro, M. A. (2005). Arguments about arguments. Systematic, critical and historical essays in logical theory. New York: Cambridge University Press.

    Google Scholar 

  • Freire, P. (1970). Pedagogia do oprimido. Rio de Janeiro: Paz e Terra. (Translated as Pedagogy of the oppressed, Harmondsworth, UK: Penguin, 1972).

    Google Scholar 

  • Giere, R. (1988). Explaining Science. A cognitive approach. Chicago: The University of Chicago Press.

    Google Scholar 

  • Grize, J-B. (1982). De la logique à l’argumentation. Genève: Droz.

    Google Scholar 

  • Habermas, J. (1981–1984). The Theory of Communicative Action. Boston, MA: Beacon Press.

    Google Scholar 

  • Habermas, J. (1997). Modernity: An unfinished project. In M. P. d’Entreves & S. Benhabib (Eds.), Habermas and the unfinished project of modernity. Cambridge: the MIT Press. (Original work published 1981).

    Google Scholar 

  • Harding, S. (1991). Whose science? Whose knowledge? Thinking from women’s lives. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Hargreaves, D. (1996). Teaching as a research-based profession: Possibilities and prospects. Teacher Training Agency Annual Lecture, Teacher Training Agency, London.

    Google Scholar 

  • Hintikka, J. (1999). Inquiry as inquiry: A logic of scientific discovery. Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Jiménez-Aleixandre, M. P., Agraso, M. F., & Eirexas, F. (2004). Scientific authority and empirical data in argument warrants about the Prestige oil spill. Paper presented at the annual meeting of the National Association for Research in Science Teaching. Vancouver, April.

    Google Scholar 

  • Jiménez-Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757–792.

    Article  Google Scholar 

  • Kelly, G. J. (2005). Inquiry, activity, and epistemic practice. Proceedings of the Inquiry Conference on Developing a Consensus Research Agenda, Rutgers University, February. Retrieved December 2006, from http://www.ruf.rice.edu/rgrandy/NSFConSched.html.

  • Kelly, G. J., & Bazerman, C. (2003). How students argue scientific claims: A rhetorical-semantic analysis. Applied Linguistics, 24 (1), 28–55.

    Article  Google Scholar 

  • Kelly, G. J., & Chen, C. (1999). The sound of music: Constructing science as sociocultural practices through oral and written discourse. Journal of Research in Science Teaching, 36(8), 883–915.

    Article  Google Scholar 

  • Kelly, G. J., & Duschl, R. A. (2002). Toward a research agenda for epistemological studies in science education. Paper presented at the annual meeting of the National Association for Research in Science Teaching, New Orleans, LA.

    Google Scholar 

  • Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342.

    Article  Google Scholar 

  • Kelly, G. J., Druker, S., & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessment with argumentation analysis. International Journal of Science Education, 20(7), 849–871.

    Article  Google Scholar 

  • Kitcher, P. (1988). The child as parent of the scientist. Mind and Language, 3(3), 215–228.

    Article  Google Scholar 

  • Knorr-Cetina, K. (1999). Epistemic cultures: How the sciences make knowledge. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. London: Continuum.

    Google Scholar 

  • Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.

    Google Scholar 

  • Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62, 155–178.

    Google Scholar 

  • Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77, 319–337.

    Article  Google Scholar 

  • Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74(5), 1245–1260.

    Article  Google Scholar 

  • Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Leach, J., Hind, A., & Ryder, J. (2003). Designing and evaluating short teaching interventions about the epistemology of science in high school classrooms. Science Education, 87(3), 831–848.

    Article  Google Scholar 

  • Lemke, J. (1990). Talking science: Language, learning and values. Norwood, NJ: Ablex.

    Google Scholar 

  • Martins, I., Mortimer, E., Osborne, J., Tsatsarelis, C., & Jiménez Aleixandre, M.P. (2001). Rhetoric and science education. In H. Behrendt, H. Dahncke, R. Duit, W. Gräber, M. Komorek, A. Kross, & P. Reiska (Eds.), Research in science education—Past, present and future (pp. 189–198). Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Mason, L. (1996). An analysis of children’s construction of new knowledge through their use of reasoning and arguing in classroom discussions. International Journal of Qualitative Studies in Education, 9(4), 411–433.

    Article  Google Scholar 

  • Mason, L. (1998). Sharing cognition to construct scientific knowledge in school contexts: The role of oral and written discourse. Instructional Science, 26, 359–389.

    Article  Google Scholar 

  • Milli Eǧitim Bakanliǧi, Turkey (2005). Ilköǧretim fen ve teknoloji ders öǧretim programi (6, 7 ve 8. siniflar). Ankara: Author.

    Google Scholar 

  • Ministerio de Educación y Ciencia, Republic of Chile (MEC). (2004). Estudio y comprensión de la naturaleza. Santiago de Chile: Author.

    Google Scholar 

  • Ministerio de Educación y Ciencia, Spain (MEC). (2007). Real Decreto 1631/2006 Enseñanzas mínimas educación secundaria obligatoria. Boletín Oficial del Estado, 5 January, 677–773.

    Google Scholar 

  • Ministry of Education, Pakistan. (2006). National Curriculum for General Science. Grades IV–VIII. Islamabad: Author.

    Google Scholar 

  • Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Maidenhead, UK: Open University Press.

    Google Scholar 

  • Myers, G. (1990). Writing biology. Texts in the social construction of scientific knowledge. Madison, UK: University of Wisconsin Press.

    Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • Norris, S. P., & Philips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224–240.

    Article  Google Scholar 

  • Organisation for Economic Cooperation and Development (2003). PISA Assessment Framework—Mathematics, reading, science and problem solving knowledge and skills. Paris: Author.

    Google Scholar 

  • Osborne, J., Erduran, S., & Simon, S. (2004). Ideas, evidence and argument in science. London: King’s College London.

    Google Scholar 

  • Perelman, C., & Olbrechts-Tyteca, L. (1958). Traité de l’argumentation. La nouvelle rhétorique. Bruxelles: Éditions de l’Université de Bruxelles. (The new rhetoric: A treatise on argumentation. Notre Dame, IN: University of Notre Dame Press, 1969).

    Google Scholar 

  • Peters, M. A. (2006). Editorial. Special issue—Philosophy of science education. Educational Philosophy and Theory, 38(5), 579–584.

    Article  Google Scholar 

  • Plantin, C. (1996). L’Argumentation. Paris: Éditions du Seuil.

    Google Scholar 

  • Plantin, C. (2005). L’Argumentation. Histoire, théories et perspectives. Paris: Presses Universitaires de France.

    Google Scholar 

  • Pontecorvo, C. (1987). Discussing for reasoning: The role of argument in knowledge construction. In E. de Corte, H. Lodewiijks, R. Parmentier, & R. Span (Eds.), Learning and instruction: Vol. 1, European research in an international context (pp. 239–250). Oxford: Pergamon Press and Leuven University Press.

    Google Scholar 

  • Qualifications and Curriculum Authority (2007). How science works. Retrieved on March 26 from www.qca.org.uk.

  • Russell, T. L. (1983). Analyzing arguments in science classroom discourse: Can teachers’ questions distort scientific authority? Journal of Research in Science Teaching, 20, 27–45.

    Article  Google Scholar 

  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634–656.

    Article  Google Scholar 

  • Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88, 345–372.

    Article  Google Scholar 

  • Siegel, H. (1989). The rationality of science, critical thinking and science education. Synthese, 80, 9–41.

    Article  Google Scholar 

  • Siegel, H. (1992). On defining “critical thinker” and justifying critical thinking. In H. A. Alexander (Ed.), Philosophy of education, 1992. Proceedings of the forty-eighth annual meeting of the Philosophy of Education Society (pp. 72–75). Urbana, IL: Philosophy of Education Society.

    Google Scholar 

  • Siegel, H. (1995). Why should educators care about argumentation? Informal Logic, 17(2), 159–176.

    Google Scholar 

  • Siegel, H. (2006). Epistemological diversity and education research: Much ado about nothing much? Educational Researcher, 35(2), 3–12.

    Article  Google Scholar 

  • Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260.

    Article  Google Scholar 

  • Taber, K. (Ed.) (2006). Ideas and evidence in science education. Special issue, School Science Review, 87.

    Google Scholar 

  • Tomorrow 98 (1992). Report of the superior committee on science, mathematics and technology in Israel. Jerusalem: Ministry of Education and Culture (English Edition, 1994).

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Walton, D. N. (1989). Informal logic: a handbook for critical argumentation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Wertsch, J. (1991). Voices of the mind: A sociocultural approach to mediated action. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Yore, L. D., Bisanz, G. L., & Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689–725.

    Article  Google Scholar 

  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Jiménez-Aleixandre, M.P., Erduran, S. (2007). Argumentation in Science Education: An Overview. In: Erduran, S., Jiménez-Aleixandre, M.P. (eds) Argumentation in Science Education. Science & Technology Education Library, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6670-2_1

Download citation

Publish with us

Policies and ethics