Mosquito Ecology pp 1049-1160 | Cite as

Estimation of the Mortalities of the Immature Stages

Preceding chapters have described various methods for sampling the different developmental stages and age groups of mosquito populations. This and subsequent chapters are concerned with analysing the numerical changes that occur in population size during the life-cycle of mosquitoes, identifying the causes of mortalities, and determining the age structure and survival rates of pre-imaginal and adult populations. A comprehension of the growth and regulation of mosquito populations is essential for understanding their population dynamics. Measurement of the mortality that necessarily occurs during the lifecycle from egg to ovipositing female has interested ecologists and statisticians alike, and many of the techniques used are founded on mathematical probabilities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams PA (2001) Describing and quantifying interspecific interactions: a com-mentary on recent approaches. Oikos 94: 209-218Google Scholar
  2. Agnew P, Haussy C, Michalakis Y (2000) Effects of density and larval competi-tion on selected life history traits of Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 37: 732-735PubMedGoogle Scholar
  3. Agnew P, Hide M, Sidobre C, Michalakis Y (2002) A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol En-tomol 27: 396-402Google Scholar
  4. Ahumada JA, Lapointe D, Samuel MD (2004) Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culicidae), along an elevational gradient in Hawaii. J Med Entomol 41: 1157-1170PubMedGoogle Scholar
  5. Aitken THG, Trapido H (1961) Replacement Phenomenon Observed amongst Sardinian Anopheline Mosquitoes following Eradication Measures. Tech Mtg Un Conserv Nat 8th, 1960, pp. 106-114Google Scholar
  6. Aksnes DL, Ohman MD (1996) A vertical life table approach to zooplankton mor-tality estimation. Limnology and Oceanography 41: 1461-1469Google Scholar
  7. Ali SR, Rozeboom LE (1971a) Cross-insemination frequencies between strains of Aedes albopictus and members of the Aedes scutellaris group. J Med Entomol 8: 263-265PubMedGoogle Scholar
  8. Ali SR, Rozeboom LE (1971b) Cross-mating between Aedes (S.) polynesiensis Marks and Aedes (S.) albopictus Skuse in a large cage. Mosquito News 31: 80-84Google Scholar
  9. Ali SR, Rozeboom LE (1973) Comparative laboratory observations on selective mating of Aedes (Stegomyia) albopictus Skuse and A. (S.) polynesiensis Marks. Mosquito News 33: 23-28Google Scholar
  10. Alto BW, Juliano SA (2001) Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J Med Entomol 38: 646-656PubMedGoogle Scholar
  11. Amalraj DD, Das PK (1994) Time to death from starvation and compulsive killing by the larvae of Toxorhynchites splendens (Diptera: Culicidae). Acta Trop 58: 151-158PubMedGoogle Scholar
  12. Amalraj DD, Das PK (1998) Estimation of predation by the larvae of Toxorhynchites splendens on the aquatic stages of Aedes aegypti. Southeast Asian J Trop Med Public Health 29: 177-183Google Scholar
  13. Anderson RM (1979) Parasite pathogenicity and depression of host population equilibria. Nature 279: 150-152Google Scholar
  14. Anderson RM (1982) Epidemiology. In: Cox FEG (ed) Modern Parasitology. Blackwell Scientific Publications, Oxford, pp. 204-251Google Scholar
  15. Anderson RM, May RM (1978) Regulation and stability of host-parasite popula-tion interactions. I. Regulatory processes. J Anim Ecol 47: 219-247Google Scholar
  16. Anderson RM, Turner BD, Taylor LR (1979) Population Dynamics. Blackwell Scientific Publications, OxfordGoogle Scholar
  17. Andis MD, Meek CL (1983) Estimated mortalities of the immature stages of rice-land mosquitoes in Louisiana. Proc Annu Mtg Texas Mosq Control Assoc 27: 13Google Scholar
  18. Andis MD, Meek CL (1984) Survival of Psorophora columbiae larvae in Louisi-ana rice fields. Proc Annu Mtg Texas Mosq Control Assoc 28: 12-13Google Scholar
  19. Andis MD, Meek CL (1985) Mortality and survival patterns of the immature stages of Psorophora columbiae. J Am Mosq Control Assoc 1: 357-362PubMedGoogle Scholar
  20. Andrewartha HG, Birch LC (1954) The Distribution and Abundance of Animals. Chicago University Press, ChicagoGoogle Scholar
  21. Apiwathnasorn C, Sucharit S, Rongsriyam Y, Thongrungkiat S, Deesin T, Punavuthi N (1990) Survival of immature Culex tritaeniorhynchus in paddy fields. Mosq-Borne Dis Bull 7: 11-16Google Scholar
  22. Armbruster P, Hutchinson RA (2002) Pupal mass and wing length as indicators of fe-cundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J Med Entomol 39: 699-704PubMedGoogle Scholar
  23. Arrivillaga J, Barrera R (2004) Food as a limiting factor for Aedes aegypti in water-storage containers. J Vector Ecol 29: 11-20PubMedGoogle Scholar
  24. Atkinson PR (1977) Preliminary analysis of a field population of citrus red scale, Aonidiella auranti (Maske 11), and the measurement and expression of stage duration and reproduction for life tables. Bull Entomol Res 67: 65-87Google Scholar
  25. Awono-Ambéné HP, Robert V (1999) Survival and emergence of immature Anopheles arabiensis mosquitoes in market-gardener wells in Dakar, Senegal. Parasite 6: 179-184PubMedGoogle Scholar
  26. Bailey DL, Choate AL, Lawman JP (1986) A rapid radioimmunoassay for the de-tection of Mansonia antigen (Diptera: Culicidae): its potential use as a sensi-tive method for studying predator-prey relationships. Bull Entomol Res 76: 141-150Google Scholar
  27. Barr AR (1985) Population regulation of immature Culiseta incidens. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp. 147-154Google Scholar
  28. Bar-Zeev M (1957) The effect of extreme temperatures on different stages of Aedes aegypti (L). Bull Entomol Res 48: 593-599Google Scholar
  29. Bay EC, Self LS (1972) Observations on the guppy, Poecilia reticulata Peters, in Culex pipiens fatigans breeding sites in Bangkok, Rangoon, and Taipei. Bull World Health Organ 46: 407-416PubMedGoogle Scholar
  30. Bayoh MN, Lindsay SW (2004) Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the labora-tory. Med Vet Entomol 18: 174-179PubMedGoogle Scholar
  31. Beaver RA (1983) The communities living in Nepenthes pitcher plants: fauna and food webs. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing Inc., Medford, New Jersey, pp. 129-159Google Scholar
  32. Beddington JR, Free CA, Lawton JH (1978) Characteristics of successful natural enemies in models of biological control of insect pests. Nature 273: 513-519PubMedGoogle Scholar
  33. Begon M, Harper JL, Townsend CR (1986) Ecology, Individuals, Populations and Communities. Blackwell Scientific Publications, OxfordGoogle Scholar
  34. Bellows TS (1981) The descriptive properties of some models for density depend-ence. J Anim Ecol 50: 139-156Google Scholar
  35. Bellows TS, Birley MH (1981) Estimating developmental and mortality rates and stage recruitment from insect stage-frequency data. Researches in Population Ecology 23: 232-244Google Scholar
  36. Bellows TS, Ortiz M, Owens JC, Huddleston EW (1982) A model for analyzing insect stage-frequency data where mortality varies with time. Researches in Population Ecology 24: 142-156Google Scholar
  37. Berlow EL, Navarette SA, Briggs CL, Power ME, Menge BA (1999) Quantifying variation in the strengths of species interactions. Ecology 80: 2206-2224Google Scholar
  38. Beverton RJH, Holt SJ (1957) On the Dynamics of Exploited Fish Populations. Fishery Investigations, ser. 2, 19, Ministry of Agriculture Fisheries and Food, London, HMSOGoogle Scholar
  39. Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17: 15-26Google Scholar
  40. Birley MH (1977) The estimation of insect density and instar survivorship func-tions from census data. J Anim Ecol 46: 497-510Google Scholar
  41. Birley MH (1979) The estimation and simulation of variable developmental pe-riod, with application to the mosquito Aedes aegypti (L.). Researches in Population Ecology 21: 68-80Google Scholar
  42. Black WC, Rai KS, Turco BJ, Arroyo DC (1989) Laboratory study of competition between United States strains of Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 26: 260-271PubMedGoogle Scholar
  43. Blackmore, MS, Scoles, GA, Craig, GB (1995) Parasitism of Aedes aegypti and Ae. albopictus (Diptera: Culicidae) by Ascogregarina spp. (Apicomplexa: Lecudinidae) in Florida. J Med Entomol 32: 847-852PubMedGoogle Scholar
  44. Blaustein L (1998) Influence of the predatory backswimmer, Notonecta maculata, on invertebrate community structure. Ecol Entomol 23: 246-252Google Scholar
  45. Blaustein L, Kotler BP (1993) Oviposition and habitat selection by the mosquito, Culiseta longiareolata: effects of conspecifics, food and green toad tadpoles. Ecol Entomol 18: 104-108Google Scholar
  46. Blaustein L, Kotler BP, Ward D (1995) Direct and indirect effects of a predatory backswimmer (Notonecta maculata) on community structure of desert tempo-rary pools. Ecol Entomol 20: 311-318Google Scholar
  47. Boreham PFL, Ohiagu CE (1978) The use of serology in evaluating invertebrate prey-predator relationships; a review. Bull Entomol Res 68: 171-194Google Scholar
  48. Bown DN, Bang YH (1980). Ecological studies on Aedes simpsoni (Diptera: Culicidae) in southeastern Nigeria. J Med Entomol 17: 367-374PubMedGoogle Scholar
  49. Bradshaw WE (1980) Blood-feeding and capacity for increase in the pitcher-plant mosquito, Wyeomyia smithii. Environ Entomol 9: 86-89Google Scholar
  50. Bradshaw WE (1983) Interaction between the mosquito Wyeomyia smithii, the midge Metriocnemus knabi, and their carnivorous host Sarracenia purpurea. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing Inc., Medford, New Jersey, pp. 161-189Google Scholar
  51. Bradshaw WE, Holzapfel CM (1983) Predator-mediated, non-equilibrium coexis-tence of tree-hole mosquitoes in southeastern North America. Oecologia (Berl.) 57: 239-256Google Scholar
  52. Bradshaw WE, Holzapfel CM (1984) Seasonal development of tree-hole mosqui-toes (Diptera: Culicidae) and Chaoboridae in relation to weather and preda-tion. J Med Entomol 21: 366-378Google Scholar
  53. Bradshaw WE, Holzapfel CM (1985) The distribution and abundance of treehole mosquitoes in eastern North America: perspectives from north Florida. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp. 3-23Google Scholar
  54. Bradshaw WE, Holzapfel CM (1986a) Habitat segregation among European tree-hole mosquitoes. Natl Geogr Res 2: 167-178Google Scholar
  55. Bradshaw WE, Holzapfel CM (1986b) Geography of density-dependent selection in pitcher-plant mosquitoes. In: Taylor F, Karban R (eds) The Evolution of Insect Life Cycles. Springer-Verlag, New York, pp. 48-65Google Scholar
  56. Bradshaw WE, Holzapfel CM (1988) Drought and the organization of tree-hole mosquito communities. Oceologia (Berl.) 74: 507-514Google Scholar
  57. Bradshaw WE, Holzapfel CM (1989) Life-historical consequences of density-dependent selection in the pitcher-plant mosquito, Wyeomyia smithii. Am Nat 133: 869-887Google Scholar
  58. Bradshaw WE, Holzapfel CM (1991) Fitness and habitat segregation of British tree-hole mosquitoes. Ecol Entomol 16: 133-144Google Scholar
  59. Briegel H, Timmermann SE (2001) Aedes albopictus (Diptera: Culicidae): physio-logical aspects of development and reproduction. J Med Entomol 38: 566-571PubMedGoogle Scholar
  60. Broadie KS, Bradshaw WE (1991) Mechanisms of interference competition in the western tree-hole mosquito Aedes sierrensis. Ecol Entomol 16: 145-154Google Scholar
  61. Brooke MM, Proske HO (1946) Precipitin test for determining natural predators of immature mosquitoes. J Natn Malar Soc 5: 45-56Google Scholar
  62. Brown D, Alexander NDE, Marrs RW, Albon S (1993). Structured accounting of variance of demographic change. J Anim Ecol 62: 490-502Google Scholar
  63. Campos RE, Lounibos LP (2000) Life tables of Toxorhynchites rutilus (Diptera: Culicidae) in nature in southern Florida. J Med Entomol 37: 385-392PubMedGoogle Scholar
  64. Campos RE, Sy VE (2003) Mortality in immatures of the floodwater mosquito Ochlerotatus albifasciatus (Diptera: Culicidae) and effects of parasitism by Strelkovimermis spiculatus (Nematoda: Mermithidae) in Buenos Aires Prov-ince, Argentina. Mem Inst Oswaldo Cruz 98: 199-208PubMedGoogle Scholar
  65. Campos RE, Fernández LA, Sy VE (2004) Study of the insects associated with the floodwater mosquito Ochlerotatus albifasciatus (Diptera: Culicidae) and their possible predators in Buenos Aires Province, Argentina. Hydrobiologia 524: 91-102Google Scholar
  66. Canyon DV, Hii JLK (1997) The gecko: an environmentally friendly biological agent for mosquito control. Med Vet Entomol 11: 319-323PubMedGoogle Scholar
  67. Casanova C, do Prado AP (2002) Key-factor analysis of immature stages of Aedes scapularis (Diptera: Culicidae) populations in southeastern Brazil. Bull En-tomol Res 92: 271-277Google Scholar
  68. Chambers RC (1985) Competition and predation among larvae of three species of treehole-breeding mosquitoes. In: Lounibos LP, Rey JR, Frank JH (eds) Ecol-ogy of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp. 25-53Google Scholar
  69. Chan KL (1971) Life table studies of Aedes albopictus (Skuse), IAEA-SM-138/19; pp. 131-44, In Sterility Principles for Insect Control or Eradication, IAEA, Vienna, STI/PUB/265Google Scholar
  70. Chan KL, Chan YC, Ho BC (1971) Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore city. 4. Competition between species. Bull World Health Organ 44: 643-649PubMedGoogle Scholar
  71. Chapman DG, Gallucci VF (eds) (1981). Quantitative population dynamics. Stat Ecol Ser 13Google Scholar
  72. Chapman HC (ed) (1985) Biological control of mosquitoes. Am Mosq Control Assoc Bull No. 6. Fresno, CaliforniaGoogle Scholar
  73. Chiang CL (1968) Introduction to Stochastic Processes in Biostatistics. John Wiley, New YorkGoogle Scholar
  74. Christie M (1958). Predation on larvae of Anopheles gambiae Giles. J Trop Med Hyg 61: 168-176PubMedGoogle Scholar
  75. Chubachi R (1979) An analysis of the generation-mean life table of the mosquito, Culex tritaeniorhynchus summorosus with particular reference to population regulation. J Anim Ecol 48: 681-702Google Scholar
  76. Clark LR, Geier PW, Hughes RD, Morris RF (1967) The Ecology of Populations in Theory and Practice. Methuen, LondonGoogle Scholar
  77. Coetzee M (2004). Distribution of the African malaria vectors of the Anopheles gambiae complex. Am J Trop Med Hyg 70: 103-104PubMedGoogle Scholar
  78. Connell JH, Mertz DB, Murdoch WW (1970) Readings in Ecology and Ecological Genetics. Harper & Row, New YorkGoogle Scholar
  79. Costanzo KS, Mormann K, Juliano SA (2005) Asymmetrical competition and pat-terns of abundance of Aedes albopictus and Culex pipiens (Diptera: Culici-dae). J Med Entomol 42: 559-570PubMedGoogle Scholar
  80. Couch JN, Bland CE (eds) (1985) The Genus Ceolomomyces. Academic Press, OrlandoGoogle Scholar
  81. Crook NE, Sunderland KD (1984) Detection of aphid remains in predatory insects and spiders by ELISA. Ann Appl Biol 105: 413-422Google Scholar
  82. Crovello TJ, Hacker CS (1972) Evolutionary strategies in life table characteristics among feral and urban strains of Aedes aegypti (L.) Evolution 26: 185-196Google Scholar
  83. Crowle AJ (1958) A simplified micro double-diffusion agar precipitin technique J Lab Clin Med 52: 784-787PubMedGoogle Scholar
  84. Cuéllar CB (1969a) A theoretical model of the dynamics of an Anopheles gambiae population under challenge with eggs giving rise to sterile males. Bull World Health Organ 40: 205-212PubMedGoogle Scholar
  85. Cuéllar CB (1969b) The critical level of interference in species eradication of mosquitoes. Bull World Health Organ 40: 213-219PubMedGoogle Scholar
  86. Dabrowska-Prot E (1966) Experimental studies on the reduction of the abundance of mosquitoes by spiders. II. Activity of mosquitoes in cages. Bull Acad Pol Sci Cl II Sér Sci Biol 14: 771-775Google Scholar
  87. Dabrowska-Prot E, Łuczak J, Tarwid K (1966) Experimental studies on the reduc-tion of the abundance of mosquitoes by spiders. III. Indices of prey reduction and some controlling factors. Bull Acad Pol Sci Cl II Sér Sci Biol 14: 777-782Google Scholar
  88. Davies RW (1969) The production of antisera for detecting specific triclad anti-gens in the gut contents of predators. Oikos 20: 248-260Google Scholar
  89. DeBach P (1966) The competitive displacement and coexistence principles. Annu Rev Entomol 11: 183-212Google Scholar
  90. De Barjac A, Sutherland DJ (eds) (1990) Bacterial Control of Mosquitoes and Black Flies. Biochemistry, Genetics and Applications of Bacillus thuringiene-sis israelensis and Bacillus sphaericus. Unwin Hyman, London Google Scholar
  91. de Carvalho SCG, Martins Júnior A de J, Lima JBP, Valle D (2002) Temperature influence on embryonic development of Anopheles albitarsis and Anopheles aquasalis. Mem Inst Oswaldo Cruz 97: 1117-1120PubMedGoogle Scholar
  92. Deevey ES (1947) Life tables for natural populations of animals. Quart Rev Biol 22: 283-314. Also reprinted in Hazen (1970)PubMedGoogle Scholar
  93. Dempster JP (1958) A study of the predators of the broom beetle (Phytodecta olivacea Forster) using the precipitin test. Proc R Entomol Soc Lond (C) 23: 34Google Scholar
  94. Dempster JP (1960) A quantitative study of the predators on the eggs and larvae of the broom beetle, Phytodecta olivacea Forster, using the precipitin test. J Anim Ecol 29: 149-167Google Scholar
  95. Dempster JP (1961) The analysis of data obtained by regular sampling of an insect population. J Anim Ecol 30: 429-432Google Scholar
  96. Dempster JP (1963) The natural prey of three species of Anthocoris (Heteroptera: Anthocoridae) living on broom (Sarothamnus scoparius L.) Entomol Exp Appl 6: 149-155Google Scholar
  97. Dempster JP (1967) The control of Pieris rapae with D.D.T. 1. The natural mor-tality of the young stages of Pieris. J Appl Ecol 4: 485-500Google Scholar
  98. Dempster JP (1983) The natural control of populations of butterflies and moths. Biol Rev 58: 461-481Google Scholar
  99. Dempster JP, Pollard E (1986) Spatial heterogeneity, stochasticity and the detec-tion of density dependence in animal populations. Oikos 46: 413-416Google Scholar
  100. Dempster JP, Richards OW, Waloff N (1959) Carabidae as predators on the pupal stage of the chrysomelid beetle, Phytodecta olivacea (Forster). Oikos 10: 65-70Google Scholar
  101. Dennehy JJ, Robakiewicz P, Livdahl T (2001) Larval rearing conditions affect kin-mediated cannibalism in a treehole mosquito. Oikos 95: 335-339Google Scholar
  102. Derr JA, Ord K (1979) Field estimates of insect colonization. J Anim Ecol 48: 521-534Google Scholar
  103. Dieng H, Mwandawiro C, Boots M, Morales R, Satho T, Tuno N, Tsuda Y, Takagi M (2002) Leaf litter decay process and the growth performance of Aedes albopictus larvae (Diptera: Culicidae). J Vector Ecol 27: 31-38PubMedGoogle Scholar
  104. Dixon RD, Brust RA (1971) Predation of mosquito larvae by the Fathead Minnow. Manitoba Entomol 5: 68-70Google Scholar
  105. Doane JF, Scotti PD, Sutherland ORW, Pottinger RP (1985) Serological identification of wireworm and staphylinid predators of the Australian soldier fly (Inopus rubriceps) and wireworm feeding on plant and animal foods. Entomol Exp Appl 38: 65-72Google Scholar
  106. Dubitskij AM (1978) Biological Methods of Control of Blood Sucking Insects in the USSR. Alma-Ata (In Russian)Google Scholar
  107. Duhrkopf RE, Benny H (1990) Differences in the larval alarm reactions in popula-tions of Aedes aegypti and Aedes albopictus. J Am Mosq Control Assoc 6: 411-414PubMedGoogle Scholar
  108. Duhrkopf RE, Young SS (1979) Some consequences of selection for fast and slow recovery from the larval alarm reaction of Aedes aegypti. Theor Appl Genet 55: 263-268Google Scholar
  109. Dye C (1982) Intraspecific competition amongst larval Aedes aegypti: food ex-ploitation or chemical interference? Ecol Entomol 7: 39-46Google Scholar
  110. Dye C (1984a) Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J Anim Ecol 53: 247-268Google Scholar
  111. Dye C (1984b) Competition amongst larval Aedes aegypti: the role of interference. Ecol Entomol 9: 355-357Google Scholar
  112. Edillo FE, Touré YT, Lanzaro GC, Dolo G, Taylor CE (2004) Survivorship and distribution of immature Anopheles gambiae s.l. (Diptera: Culicidae) in Ba-nambani village, Mali. J Med Entomol 41: 333-339PubMedGoogle Scholar
  113. Edgerly JS, Willey MS, Livdahl T (1999) Intraguild predation among larval tree-hole mosquitoes, Aedes albopictus, Ae. aegypti, and Ae. triseriatus (Diptera: Culicidae), in laboratory microcosms. J Med Entomol 36: 394-399PubMedGoogle Scholar
  114. Enfield MA, Pritchard G (1977) Methods for sampling immature stages of Aedes spp. (Diptera: Culicidae) in temporary ponds. Can Entomol 109: 1435-1444Google Scholar
  115. Fava FD, Ludueña Almeida FF, Almirón WR, Brewer M (2001) Winter biology of Aedes albifasciatus (Diptera: Culicidae) from Córdoba, Argentina. J Med Entomol 38: 253-259Google Scholar
  116. Fish D, Carpenter SR (1982) Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology 63: 283-288Google Scholar
  117. Fisher IJ, Bradshaw WE, Kammeyer C (1990) Fitness and its correlates assessed by intra- and interspecific interactions among tree-hole mosquitoes. J Anim Ecol 59: 819-829Google Scholar
  118. Fitcher BL, Stephen WP (1984) Time-related decay of prey antigens by arboreal spiders as detected by ELISA. Environ Entomol 13: 1583-1587Google Scholar
  119. Focks DA, Sackett SR (1985) Some factors affecting interaction of Toxorhynchites amboiensis with Aedes and Culex in an urban environment. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Laboratory, Vero Beach, pp. 55-64Google Scholar
  120. Fox CJS, MacLellan CR (1956) Some Carabidae and Staphylinidae shown to feed on a wireworm, Agnotes sputator (L.) by the precipitin test. Can Entomol 88: 228-231Google Scholar
  121. Frank JH (1967) A serological method used in the investigation of the predators of the pupal stage of the winter moth, Operophtera brumata (L.) (Hydriomeni-dae). Quaest Entomol 3: 95-105Google Scholar
  122. Frank JH (1983) Bromeliad phytotelmata and their biota, especially mosquitoes. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing Inc., Medford, New Jersey, pp. 101-128Google Scholar
  123. Frank JH, Curtis GA (1977a) On the bionomics of bromeliad-inhabiting mosqui-toes. IV. Egg mortality of Wyeomyia vanduzeei caused by rainfall. Mosquito News 37: 239-245Google Scholar
  124. Frank JH, Curtis GA (1977b) On the bionomics of bromeliad-inhabiting mosqui-toes. III. The probable strategy of larval feeding in Wyeomyia vanduzeei and Wyeomyia medioalbipes. Mosquito News 37: 200-206Google Scholar
  125. Fuxa JR (1987) Ecological considerations for the use of entomopathogens in IPM. Annu Rev Entomol 32: 225-251Google Scholar
  126. Gauch HG (1982) Multivariate Analysis in Community Ecology. Cambridge Uni-versity Press, Cambridge.Google Scholar
  127. Giller PS (1982) The natural diets of waterbugs (Hemiptera-Heteroptera): electro-phoresis as a potential method of analysis. Ecol Entomol 7: 233-237Google Scholar
  128. Giller PS (1984) Predator gut state and prey detectability using electrophoretic analysis of gut contents. Ecol Entomol 9: 157-162Google Scholar
  129. Giller PS (1986) The natural diet of the Notonectidae: field trials using electropho-resis. Ecol Entomol 11: 163-172Google Scholar
  130. Gillies MT, Gubbins SJ (1982) Culex (Culex) torrentium Martini and Cx. (Cx.) pipiens L. in a southern English county, 1974-1975. Mosq Syst 14: 127-130Google Scholar
  131. Gillies MT, Smith A (1960) The effect of a residual house-spraying campaign in East Africa on species balance in the Anopheles funestus group. The replace-ment of A. funestus Giles by A. rivulorum Leeson. Bull Entomol Res 51: 243-252Google Scholar
  132. Gilotra SK, Rozeboom LE, Bhattacharya NC (1967) Observations on possible competitive displacement between populations of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Calcutta. Bull World Health Organ 37: 437-446PubMedGoogle Scholar
  133. Gilpin ME, Langford RP (1978) Evidence for density dependent growth regula-tion among larval Aedes sierrensis mediated by food competition. Proc Cali-fornia Mosq Vector Control Assoc 46: 42-45Google Scholar
  134. Gilpin ME, McClelland GAH (1979) System analysis of the yellow fever mos-quito Aedes aegypti. Fortschr Zool 25: 355-388PubMedGoogle Scholar
  135. Gilpin ME, McClelland GAH, Pearson JW (1976) Space, time and stability of laboratory mosquito populations. Am Nat 110: 1107-1111Google Scholar
  136. Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED (2002) Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 39: 162-172PubMedGoogle Scholar
  137. Goettel MS (1987) Field incidence of mosquito pathogens and parasites in central Alberta. J Am Mosq Control Assoc 3: 231-238PubMedGoogle Scholar
  138. Gomes A de C, Gotlieb SLD, Marques CC de A, de Paula MB, Marques GRAM (1995) Duration of larval and pupal development stages of Aedes albopictus in natural and artificial containers. Rev Saúde Pública 29: 15-19PubMedGoogle Scholar
  139. Gomez C, Rabinovich JE, Machado-Allison CE (1977) Population analysis of Culex pipiens fatigans Wied. (Diptera: Culicidae) under laboratory conditions. J Med Entomol 13: 453-463PubMedGoogle Scholar
  140. Greenstone MH (1977) A passive haemagglutination inhibition assay for the identi-fication of stomach contents of invertebrate predators. J Appl Ecol 14: 457-464Google Scholar
  141. Gubler DJ (1970a) Comparison of reproductive potentials of Aedes (Stegomyia) albopictus Skuse and Aedes (Stegomyia) polynesiensis Marks. Mosquito News 30: 201-209Google Scholar
  142. Gubler DJ (1970b) Competitive displacement of Aedes (Stegomyia) polynesiensis Marks by Aedes (Stegomyia) albopictus Skuse in laboratory populations. J Med Entomol 7: 229-235PubMedGoogle Scholar
  143. Gubler DJ (1971) Studies on the comparative oviposition behaviour of Aedes (Stegomyia) albopictus and Aedes (Stegomyia) polynesiensis Marks. J Med Entomol 8: 675-682PubMedGoogle Scholar
  144. Haldane JBS (1949) Disease and evolution. In: Symposium sui fattori ecologici e genetici della speciazone negli animali. Ric Sci 19 (suppl.) 3-11Google Scholar
  145. Harcourt DG, Yee JM (1982) Polynomial algorithm for predicting the duration of insect life stages. Environ Entomol 11: 581-584Google Scholar
  146. Hard JJ, Bradshaw WE, Malarkey DJ (1989) Resource- and density-dependent development in tree-hole mosquitoes. Oikos 54: 137-144Google Scholar
  147. Hassell MP (1971) Mutual interference between searching insect parasites. J Anim Ecol 40: 473-486Google Scholar
  148. Hassell MP (1975) Density-dependence in single-species populations. J Anim Ecol 44: 283-295Google Scholar
  149. Hassell MP (1985) Insect natural enemies as regulating factors. J Anim Ecol 54: 323-334Google Scholar
  150. Hassell MP (1987) Detecting regulation in patchily distributed animal populations. J Anim Ecol 56: 705-713Google Scholar
  151. Hassell MP, Huffaker CB (1969) The appraisal of delayed and direct density-dependence. Can Entomol 101: 353-361Google Scholar
  152. Hassell MP, May RM (1973) Stability in insect host-parasitic models. J Anim Ecol 42: 693-726Google Scholar
  153. Hassell MP, May RM (1974) Aggregation of predators and insect parasites and its effect on stability. J Anim Ecol 43: 567-587Google Scholar
  154. Hassell MP, Rogers DJ (1972) Insect parasite responses in the development of population models. J Anim Ecol 41: 661-676Google Scholar
  155. Hassell MP, Varley GC (1969) New inductive population model for insect para-sites and its bearing on biological control. Nature 223: 1133-1137PubMedGoogle Scholar
  156. Hassell MP, Lawton JH, May RM (1976) Patterns of dynamical behaviour in sin-gle-species populations. J Anim Ecol 45: 471-486Google Scholar
  157. Hassell MP, Latto J, May RM (1989) Seeing the wood from the trees: detecting density dependence from existing life-table studies. J Anim Ecol 58: 883-892Google Scholar
  158. Hawley WA (1985a) The effect of larval density on adult longevity of a mosquito, Aedes sierrensis: epidemiological consequences. J Anim Ecol 54: 955-964Google Scholar
  159. Hawley WA (1985b) Population dynamics of Aedes sierrensis. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp. 167-184Google Scholar
  160. Hawley WA (1988) The biology of Aedes albopictus. J Am Mosq Control Assoc 4 (suppl.): 1-39Google Scholar
  161. Hayes J, Hsi BP (1975) Interrelationships between selected meteorologic phenom-ena and immature stages of Culex pipiens quinquefasciatus Say: study of an isolated population. J Med Entomol 12: 299-308PubMedGoogle Scholar
  162. Hazen W (ed) (1970) Readings in Population and Community Ecology, 6th edn. WB Saunders, PhiladelphiaGoogle Scholar
  163. Healey JA, Cross TF (1975) Immunoelectroosmorphoresis for serological identifi-cation of predators of the sheep-tick Ixodes ricinus. Oikos 26: 97-101Google Scholar
  164. Hill AB (1971) Principles of Medical Statistics. Lancet Ltd, London Google Scholar
  165. Ho BC, Ewert A, Chew L-M (1989) Interspecific competition among Aedes ae-gypti, Ae. albopictus, and Ae. triseriatus (Diptera: Culicidae): larval develop-ment in mixed cultures. J Med Entomol 26: 615-623PubMedGoogle Scholar
  166. Hokkanen HMT, Pimentel D (1989) New associations in biological control: the-ory and practice. Can Entomol 121: 829-840Google Scholar
  167. Holling CS (1959) The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can Entomol 91: 385-398Google Scholar
  168. Huffaker CB (1944) The temperature relations of the immature stages of the ma-larial mosquito An. quadrimaculatus Say, with a comparison of the develop-mental power of constant and variable temperatures in insect metabolism. Ann Entomol Soc Am 37: 1-27Google Scholar
  169. Huffaker CB, Kennett CE (1969) Some aspects of assessing efficiency of natural enemies. Can Entomol 101: 425-447Google Scholar
  170. Huffaker CB, Rabb RL (eds) (1984) Ecological Entomology. John Wiley, New YorkGoogle Scholar
  171. Hughes RD (1962) A method for estimating the effects of mortality on aphid populations. J Anim Ecol 31: 389-396Google Scholar
  172. Hughes RD (1963) Population dynamics of the cabbage aphid, Brevicoryne bras-sicae (L.). J Anim Ecol 32: 393-424Google Scholar
  173. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experi-ments. Ecol Mongr 54: 187-211Google Scholar
  174. Hwang Y-S, Mulla MS (1975) Overcrowding factors of mosquito larvae. Their potential for mosquito control. Proc California Mosq Control Assoc 43: 73-74Google Scholar
  175. Hwang Y-S, Mulla MS, Majori G (1976) Overcrowding factors of mosquito lar-vae. VIII. Structure-activity relationship of methyl 2-alkylalkanoates against mosquito larvae. Agricultural Food Chemistry 24: 649-651Google Scholar
  176. Ikeshoji T (1977) Self-limiting economes in the populations of insects and some aquatic animals. J Pest Sci 2: 77-89Google Scholar
  177. Ikeshoji T (1978) Lipids self-limiting the populations of mosquito larvae. In: Symposium on the Pharmacological Effects of Lipids, AOCS Monograph No 5, pp. 113-121Google Scholar
  178. Ikeshoji T, Ichimoto I, Ono T, Naoshima Y, Ueda H (1977) Overcrowding factors of mosquito larvae. X. Structure-bioactivity relationship and bacterial activa-tion of the alkyl-branched hydrocarbons. Appl Entomol Zool 12: 265-273Google Scholar
  179. Irving-Bell RJ, Okoli EI, Diyelong DY, Lyimo EO, Onyia OC (1987). Septic tank mosquitoes: competition between species in central Nigeria. Med Vet Entomol 1: 243-250PubMedGoogle Scholar
  180. Istock CA, Wasserman SS, Zimmer H (1975) Ecology and evolution of the pitcher-plant mosquito: 1. Population dynamics and laboratory responses to food and population density. Evolution 29: 296-312Google Scholar
  181. Istock CA, Zisfeln J, Vavra KJ (1976a) Ecology and evolution of the pitcher-plant mosquito. 2. The substructure of fitness. Evolution 30: 535-547Google Scholar
  182. Istock CA, Vavra KJ, Zimmer H (1976b) Ecology and evolution of the pitcher-plant mosquito: 3. Resources tracking by a natural population. Evolution 30: 548-557Google Scholar
  183. Itô Y (1961) Factors that effect the fluctuations of animal numbers, with special reference to insect outbreaks. Bull Natl Inst Agr Sci C13: 57-89Google Scholar
  184. Itô Y (1972) On the methods for determining density-dependence by means of re-gression. Oecologia (Berl.) 10: 347-372Google Scholar
  185. Jackson N (1953) Observations on the feeding habits of a predaceous mosquito larva, Culex (Lutzia) tigripes Grandpré and Charmoy (Diptera). Proc R Ento-mol Soc Lond (A) 28: 153-159Google Scholar
  186. James HG (1961) Some predators of Aedes stimulans (Walk.) and Aedes trichurus (Dyar) (Dipt.: Culicidae) in woodland pools. Can J Zool 39: 533-540Google Scholar
  187. James HG (1964) Insect and other fauna associated with the rockpool mosquito Aedes altropalpus (Coq.). Mosquito News 24: 325-329Google Scholar
  188. James HG (1966) Insect predators of univoltine mosquitoes in woodland pools of the pre-Cambrian Shield in Ontario. Can Entomol 98: 550-555Google Scholar
  189. Jenkins DW (1964) Pathogens, parasites and predators of medically important ar-thropods. Annotated list and bibliography. Bull World Health Organ 30 (Suppl.): 5-150Google Scholar
  190. Joshi DS (1996) Effect of fluctuating and constant temperatures on development, adult longevity and fecundity in the mosquito Aedes krombeini. J Thermal Biol, 21: 151-154Google Scholar
  191. Juliano SA (1998) Species introduction and replacement among mosquitoes: inter-specific resource competition or apparent competition? Ecology 79: 255-268Google Scholar
  192. Juliano SA, O’Meara GF, Morrill JR, Cutwa MM (2002) Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia (Berl.) 130: 458-469Google Scholar
  193. Kapuge SH, Danthanarayana W, Hoogenraad N (1987) Immunological investiga-tion of prey-predator relationships for Pieris rapae (L.) (Lepidoptera: Pieri-dae). Bull Entomol Res 77: 247-254Google Scholar
  194. Kaur R, Reuben R (1981) Studies of density and natural survival of immatures of Anopheles stephensi Liston in wells in Salem (Tamil Nadu). Indian J Med Res 73 (Suppl.): 129-135PubMedGoogle Scholar
  195. Kellett FRS, Omardeen TA (1957) Tree hole breeding of Aedes aegypti (Linn) in Arima, Trinidad, B.W.I. W. Indian Med J 6: 179-188Google Scholar
  196. Kiflawi M, Blaustein L, Mangel M (2003a) Predation-dependent oviposition habitat selection by the mosquito Culiseta longiareolata: a test of competing hypothe-ses. Ecol Letters 6: 35-40Google Scholar
  197. Kiflawi M, Blaustein L, Mangel M (2003b) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspeci-fic larval density. Ecol Entomol 28: 168-173Google Scholar
  198. Kiritani K, Nakasuji F (1967) Estimation of the stage-specific survival rate in the insect population with overlapping stages. Researches in Population Ecology 9: 143-152Google Scholar
  199. Knight TM, Chase JM, Goss CW, Knight JJ (2004) Effects of interspecific com-petition, predation, and their interaction on survival and development time of immature Anopheles quadrimaculatus. J Vector Ecol 29: 277-284PubMedGoogle Scholar
  200. Kobayashi S (1968) Estimation of the individual number entering each develop-mental stage in an insect population. Researches in Population Ecology 10: 40-44Google Scholar
  201. Koenraadt CJM, Takken W (2003) Cannibalism and predation among larvae of the Anopheles gambiae complex. Med Vet Entomol 17: 61-66PubMedGoogle Scholar
  202. Koenraadt CJM, Majambere S, Hemerik L, Takken W (2004) The effects of food and space on the occurrence of cannibalism and predation among larvae of Anopheles gambiae s.l.. Entomol Exp Appl 112: 125-134Google Scholar
  203. Kuno E (1971) Sampling error as a misleading artifact in ‘key factor analysis’. Researches in Population Ecology 13: 28-45Google Scholar
  204. Kuno E (1973) Statistical characteristics of the density-dependent population fluc-tuations and the evaluation of density-dependence and regulation in animal populations. Researches in Population Ecology 15: 99-120Google Scholar
  205. Kuno E (1991) Sampling and analysis of insect populations. Annu Rev Entomol 36: 285-304Google Scholar
  206. Lacey LA, Lacey CM (1990) The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. J Am Mosq Control Assoc 6 (Suppl. 2) 1-93Google Scholar
  207. Laird M (ed) (1981) Biocontrol of Medical and Veterinary Pests. Praeger Publish-ers, New YorkGoogle Scholar
  208. Laird M, Miles JW (eds) (1983) Integrated Mosquito Control Methodologies. Volume 1. Experience and Components from Conventional Chemical Control. Academic Press, LondonGoogle Scholar
  209. Laird M, Miles JW (eds) (1985) Integrated Mosquito Control Methodologies. Volume 2. Biocontrol and Other Innovative Components, and Future Direc-tions. Academic Press, LondonGoogle Scholar
  210. Lakhani KH, Service MW (1974) Estimated mortalities of the immature stages of Aedes cantans (Meigen) (Dipt., Culicidae) in a natural habitat. Bull Entomol Res 64: 265-276Google Scholar
  211. Landry SV, DeFoliart GR, Hogg DB (1988) Adult body size and survivorship in a field population of Aedes triseriatus. J Am Mosq Control Assoc 4: 121-128PubMedGoogle Scholar
  212. Lang JD (2003) Factors affecting immatures of Ochlerotatus taeniorhynchus (Diptera: Culicidae) in San Diego County, California. J Med Entomol 40: 387-394Google Scholar
  213. Lansdowne C, Hacker CS (1975) The effect of fluctuating temperature and humidity on the adult life table characteristics of five strains of Aedes aegypti. J Med Entomol 11: 723-733PubMedGoogle Scholar
  214. Laughlin R (1965) Capacity for increase: a useful population statistic. J Anim Ecol 34: 77-91Google Scholar
  215. Lee FC (1967) Laboratory observations on certain mosquito larval predators. Mosquito News 27: 332-338Google Scholar
  216. Lester PJ, Pike AJ (2003) Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand. J Vector Ecol 28: 267-274PubMedGoogle Scholar
  217. Lister A (1984) Predation in an Antarctic micro-arthropod community. Acarol 6: 886-892Google Scholar
  218. Lister A, Block W, Usher MB (1988) Arthropod predation in an Antarctic terres-trial community. J Anim Ecol 57: 957-971Google Scholar
  219. Liu Z, Zhang Y, Yang Y (1985) Population dynamics of Aedes (Stegomyia) al-bopictus (Skuse) under laboratory conditions. Acta Entomol Sin 28: 270-280 (In Chinese, English summary)Google Scholar
  220. Livdahl TP, Sugihara G (1984) Non-linear interactions of populations and the im-portance of estimating per capita rates of change. J Anim Ecol 53: 573-580Google Scholar
  221. Lloyd M (1967) Mean crowding. J Anim Ecol 36: 1-30Google Scholar
  222. Lord CC (1998) Density dependence in larval Aedes albopictus (Diptera: Culici-dae). J Med Entomol 35: 825-829PubMedGoogle Scholar
  223. Loughton BG, West AS (1962) Serological assessment of spider predation on the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortrici-dae). Proc Entomol Soc Ontario 92: 176-180Google Scholar
  224. Loughton BG, Derry C, West AS (1963) Spiders and the spruce budworm. Mem Entomol Soc Canada 31: 249-268Google Scholar
  225. Lounibos LP (1979) Mosquitoes occurring in the axils of Pandanus rabaiensis Rendle on the Kenya coast. Cah ORSTOM sér Entomol Méd Parasitol 17: 25-29Google Scholar
  226. Lounibos LP (1981) Habitat segregation among African treehole mosquitoes. Ecol Entomol 6: 129-154Google Scholar
  227. Lounibos LP (1983) The mosquito community of treeholes in subtropical Florida. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing, Medford, pp. 223-246Google Scholar
  228. Lounibos LP (1985) Interactions influencing production of tree-hole mosquitoes in south Florida. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mos-quitoes: Proceedings of a Workshop. Medical Entomology Laboratory. Vero Beach, Florida, pp. 65-77Google Scholar
  229. Lounibos LP, Machado-Allison CE (1986) Mosquito maternity: Egg brooding in the life cycle of Trichoprosopon digitatum. In: Taylor F, Karban R (eds) The Evolution of Insect Life Cycles. Springer-Verlag, New York, pp. 173-184Google Scholar
  230. Lounibos LP, Suárez S, Menéndez Z, Nishimura N, Escher RL, O’Connell SM, Rey JR (2002) Does temperature affect the outcome of larval competition be-tween Aedes aegypti and Aedes albopictus? J Vector Ecol 27: 86-95PubMedGoogle Scholar
  231. Lounibos LP, O’Meara GF, Nishimura N, Escher RL (2003) Interactions with native mosquito larvae regulate the production of Aedes albopictus from bromeliads in Florida. Ecol Entomol 28: 551-558Google Scholar
  232. Lowrie RC (1973a) The effect of competition between larvae of Aedes (S) al-bopictus Skuse and A. (S) polynesiensis Marks. J Med Entomol 10: 23-30PubMedGoogle Scholar
  233. Lowrie RC (1973b) Displacement of Aedes (S) polynesiensis Marks by A (S) al-bopictus Skuse through competition in the larval stages under laboratory conditions. J Med Entomol 10: 131-136PubMedGoogle Scholar
  234. Lowry OL, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275PubMedGoogle Scholar
  235. Luck RF (1971) An appraisal of two methods of analysing insect life tables. Can Entomol 103: 1261-1271Google Scholar
  236. Łuczak J, Dabrowska-Prot E (1966) Experimental studies on the reduction of the abundance of mosquitoes by spiders. I. Intensity of spider predation on mos-quitoes. Bull Acad Pol Sci Cl II Sér Sci Biol 14: 315-320Google Scholar
  237. Lundkvist E, Landin J, Jackson M, Svensson C (2003) Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in labora-tory tests of prey preference. Bull Entomol Res 93: 219-226PubMedGoogle Scholar
  238. Lutwama JJ, Mukwaya LG (1995) Estimates of mortalities of larvae and pupae of the Aedes simpsoni (Theobald) (Diptera: Culicidae) complex in Uganda. Bull Entomol Res 85: 93-99Google Scholar
  239. MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press. Princeton, New JerseyGoogle Scholar
  240. Macdonald WW (1956) Aedes aegypti in Malaya. II. Larval and adult biology. Ann Trop Med Parasitol 50: 399-414PubMedGoogle Scholar
  241. Machado-Allison CE, Rodriquez DJ, Barrera R, Cova CG (1983) The insect community associated with inflorescences of Heliconia caribea Lamarck in Venezuela. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing, Medford, pp. 247-270Google Scholar
  242. Mackauer M, Ehler LE, Roland J (1990) Critical Issues in Biological Control. In-tercept, Andover Mackey BE, Hoy JB (1978) Culex tarsalis: Sequential sampling as a means of estimating populations in Californian rice field. J Econ Entomol 71: 329-334Google Scholar
  243. Maelzer DA (1970) The regression of log Nn+1 on log Nn as a test of density de-pendence: an exercise with computer-constructed density-independent popula-tions. Ecology 51: 810-822Google Scholar
  244. Maharaj R (2003) Life table characteristics of Anopheles arabiensis (Diptera: Culicidae) under simulated seasonal conditions. J Med Entomol 40: 737-742PubMedGoogle Scholar
  245. Mahmood F (1997) Life-table attributes of Anopheles albimanus (Wiedemann) under controlled laboratory conditions. J Vector Ecol 22: 103-108PubMedGoogle Scholar
  246. Mahmood F, Crans WJ (1998) Effect of temperature on the development of Culiseta melanura (Diptera: Culicidae) and its impact on the amplification of eastern equine encephalomyelitis virus in birds. J Med Entomol 35: 1007-1012PubMedGoogle Scholar
  247. Manly, BF J (1974a) A comparison of methods for the analysis of insect stage-frequency data. Oecologia (Berl.), 17: 335-48Google Scholar
  248. Manly, BFJ (1974b) Estimation of stage-specific survival rates and other parame-ters for insect populations developing through several stages. Oecologia (Berl.), 15: 277-85Google Scholar
  249. Manly, BF J (1976). Extensions to Kiritani and Nakasuji’s method for analysing insect stage-frequency data. Res. Popul. Ecol., 17: 191-9Google Scholar
  250. Manly, BFJ (1977a) A further note on Kiritani and Nakasuji’s model for stage-frequency data including comments on the use of Tukey’s jackknife tech-niques for estimating variances. Res. Popul. Ecol., 18: 177-86Google Scholar
  251. Manly, BFJ (1977b) The determination of key factors from life table data. Oeco-logia (Berl.), 31: 111-7Google Scholar
  252. Manrique-Saide, P., Ibáñez-Bernal, S., Delfín-González, H & Tabla, VP (1998) Mesocyclops longisetus effects on survivorship of Aedes aegypti immature stages in car tyres. Med Vet Entomol 12: 386-390PubMedGoogle Scholar
  253. Marchi A, Munstermann LE (1987) The mosquitoes of Sardinia: species records 35 years after the malaria eradication campaign. Med. vet. Ent., 1: 89-96Google Scholar
  254. Marten GG, Mieu Nguyen, Giai Ngo (2000) Copepod predation on Anopheles quadrimaculatus larvae in rice fields. J Vector Ecol 25: 1-6PubMedGoogle Scholar
  255. Mattingly PF (1967) Aedes aegypti and other mosquitos in relation to the dengue syndrome. Bull World Health Organ 36: 533-55PubMedGoogle Scholar
  256. May, RM (edit.). (1981) Theoretical Ecology: Principles and Applications (2nd edit.). Blackwell Scientific Publications, Oxford, ix + 489 pp.Google Scholar
  257. May, RM (1986) The search for patterns in the balance of nature; advances and re-treats. Ecology, 67: 1115-26Google Scholar
  258. May, RM & Oster, GF (1976) Bifurcations and dynamic complexity in simple ecological models. Am. Nat., 110: 573-600Google Scholar
  259. McDonald, G & Buchanan, GA (1981). The mosquito and predatory insect fauna inhibiting fresh-water ponds, with particular reference to Culex annulirostris Skuse (Diptera: Culicidae). Aust. J. Ecol., 6: 21-7.Google Scholar
  260. McDonald, L., Manly, B., Lockwood, J & Logan, J (edit). (1989) Estimation and Analysis of Insect Populations. In Proc. Conf. Laramie, Wyoming, 25-29 January 1988. Springer-Verlag, Berlin, xiv + 492 pp.Google Scholar
  261. McIver, JD (1981) An examination of the utility of the precipitin test for evalua-tion of arthropod predator-prey relationships. Can. Ent., 113: 213-22Google Scholar
  262. Menon, PKB & Rajagopalan, PK (1979) Seasonal changes in the density and natural mortality of immature stages in the urban malaria vector, Anopheles stephensi (Liston) in wells in Pondicherry. Indian J. med. Res., 70 (Suppl.), 123-7PubMedGoogle Scholar
  263. Menon, PKB & Sharma, VP (1981) Geographic variation in life table attributes of four populations of Anopheles stephensi Liston from India. Indian J. Malar., 18: 91-7Google Scholar
  264. Mercer, DR., Wettach, GR & Smith, JL (2005) Effects of larval density and pre-dation by Toxorhynchites amboinensis on Aedes polynesiensis (Diptera: Culicidae) developing in coconuts. Journal of the American Mosquito Control Association, 21: 425-431PubMedGoogle Scholar
  265. Miura, T & Takahashi, RM (1988) Development and survival rates of immature stages of Culex tarsalis (Diptera: Culicidae) in central California rice fields. Proc. Calif. Mosq. & Vect. Contr. Ass., 56: 168-79Google Scholar
  266. Miura, T., Takahashi, RM & Mulligan, FS (1978) Field evaluation of the effec-tiveness of predacious insects as a mosquito control agent. Proc. Calif. Mosq. & Vect. Contr. Ass., 46: 80-1Google Scholar
  267. Miura, T., Takahashi, RM & Wilder, WH (1984) Impact of the mosquitofish (Gambusia affinis) on a rice field ecosystem when used as a mosquito control agent. Mosquito News, 44: 510-17Google Scholar
  268. Mogi, M (1978) Population studies on mosquitoes in the rice field area of Nagasaki, Japan, especially on Culex tritaeniorhynchus. Trop. Med., 20: 173-263Google Scholar
  269. Mogi, M (1981) Population dynamics and methodology for biocontrol of mosqui-toes, pp. 140-172. In Biocontrol of Medical and Veterinary Pests, (edit. M. Laird). Praeger Scientific, New York, xx + 235 pp.Google Scholar
  270. Mogi, M & Okazawa, T (1990) Factors influencing development and survival of Culex pipiens pallens larvae (Diptera: Culicidae) in polluted urban creeks. Res. Popul. Ecol., 32: 135-49Google Scholar
  271. Mogi, M & Yamamura, N (1988) Population regulation of a mosquito Armigeres theobaldi with description of the animal fauna in zingiberaceous inflorescen-ces. Res. Popul. Ecol., 30: 251-65Google Scholar
  272. Mogi, M., Mori, A & Wada, Y (1980a) Survival rates of Culex tritaeniorhynchus (Diptera: Culicidae) larvae in fallow rice fields before summer cultivation. Trop. Med., 22: 47-59Google Scholar
  273. Mogi, M., Mori, A & Wada, Y (1980b) Survival rates of immature stages of Culex tritaeniorhynchus (Diptera: Culicidae) in rice fields under summer cultivation. Trop. Med., 22: 111-26Google Scholar
  274. Mogi, M., Miyagi, I & Cabrera, B D (1984) Development and survival of imma-ture mosquitoes (Diptera: Culicidae) in Philippine rice fields. J Med Entomol 21: 283-91PubMedGoogle Scholar
  275. Mogi, M., Horio, M., Miyagi, I & Cabrera, B D (1985) Succession, distribution, overcrowding and predation in the aquatic community in aroid axils, with special reference to mosquitoes, pp. 95-119. In Ecology of Mosquitoes: Pro-ceedings of a Workshop (edit. LP Lounibos, JR Rey & JH Frank). Florida Medical Entomology Laboratory, Vero Beach, Florida, xix + 579 pp.Google Scholar
  276. Mogi, M., Okazawa, T., Miyagi, I., Sucharit, S., Tumrasvin, W., Deesin, T & Khamboonruang, C. (1986). Development and survival of anopheline imma-tures (Diptera: Culicidae) in rice fields in northern Thailand. J Med Entomol 23: 244-50PubMedGoogle Scholar
  277. Mokany, A & Shine, R (2002a) Pond attributes influence competitive interactions between tadpoles and mosquito larvae. Austral Ecology, 27: 396-404Google Scholar
  278. Mokany, A & Shine, R (2002b) Competition between tadpoles and mosquitoes: the effects of larval density and tadpole size. Australian Journal of Zoology, 50: 549-563Google Scholar
  279. Mokany, A & Shine, R (2003a) Competition between tadpoles and mosquito lar-vae. Oecologia, 135: 615-620PubMedGoogle Scholar
  280. Mokany, A & Shine, R (2003b) Biological warfare in the garden pond: tadpoles suppress the growth of mosquito larvae. Ecological Entomology, 28: 102-108Google Scholar
  281. Moon, TE (1976) A statistical model of the dynamics of a mosquito vector (Culex tarsalis) population. Biometrics, 32: 355-68PubMedGoogle Scholar
  282. Moore CG, Fisher BR (1969) Competition in mosquitoes. Density and species ra-tio effects on growth, mortality, fecundity, and production of growth retar-dant. Ann. ent. Soc. Am., 62: 1325-31Google Scholar
  283. Moore CG, Whitacre DM (1972) Competition in mosquitoes. 2. Production of Aedes aegypti larval growth retardant at various densities and nutrition levels. Ann. ent. Soc. Am., 65: 915-8Google Scholar
  284. Moore CG, Reiter P, Eliason DA, Bailey RE, Campos EG (1990) Apparent influ-ence of the stage of blood meal digestion on the efficacy of ground applied ULV aerosols for the control of urban Culex mosquitoes. III. Results of a computer simulation. J Am Mosq Control Assoc 6: 375-83Google Scholar
  285. Morales, ME., Wesson, DM., Sutherland, IW., Impoinvil, DE., Mbogo, CM., Githure, JI & Beier, JC (2003) Determination of Anopheles gambiae larval DNA in the gut of insectivorous dragonfly (Libellulidae) nymphs by poly-merase chain reaction. Journal of the American Mosquito Control Associa-tion, 19: 163-165Google Scholar
  286. Mori, A (1979) Effects of larval density and nutrition on some attributes of imma-ture and adult Aedes albopictus. Trop. Med., 21: 85-103Google Scholar
  287. Mori, A & Wada, Y (1978) Seasonal abundance of Aedes albopictus in Nagasaki. Trop. Med., 20: 29-37Google Scholar
  288. Morris, RF (1959) Single-factor analysis in population dynamics. Ecology, 40: 580-8.Google Scholar
  289. Morris, RF (1963) Predictive population equations based on key factors. Mem. ent. Soc. Canada, 32: 16-21Google Scholar
  290. Morris, RF & Royama, T (1969) Logarithmic regression as an index of re-sponses to population density. A comment on a paper by MP Hassell and CB Huffaker. Can. Ent., 101: 361-4Google Scholar
  291. Morrison, A & Andreadis, TG (1992) Larval population dynamics in a community of nearctic Aedes inhabiting a temporary vernal pool. Journal of the American Mosquito Control Association, 8: 52-57PubMedGoogle Scholar
  292. Mottram, P & Kettle, DS (1997) Development and survival of immature Culex annulirostris mosquitoes in southeast Queensland. Med Vet Entomol 11: 181-186PubMedGoogle Scholar
  293. Mountford, M D (1988) Population regulation, density dependence, and heteroge-neity. J. Anim. Ecol., 57: 845-58Google Scholar
  294. Mpho, M., Holloway, GJ & Callaghan, A (2000) Fluctuating wing asymmetry and larval density stress in Culex quinquefasciatus (Diptera: Culicidae). Bull En-tomol Res 90: 279-283Google Scholar
  295. Mueller, LD (1997) Theoretical and experimental examination of density-dependent selection. Ann Rev Ecol Syst, 28: 269-288Google Scholar
  296. Murray, BG (1979) Population Dynamics. Academic Press, New York, ix + 212 pp.Google Scholar
  297. Murray, RA & Solomon, MG (1978) A rapid technique for analysing diets of invertebrate predators by electrophoresis. Ann. appl. Biol., 90: 7-10Google Scholar
  298. Nannini, MA & Juliano, SA (1997) Effects of developmental asynchrony between Aedes triseriatus (Diptera: Culicidae) and its predator Toxorhynchites rutilus (Diptera: Culicidae). J Med Entomol 34: 457-460PubMedGoogle Scholar
  299. Oda, T., Uchida, K., Mori, A., Mine, M., Eshita, Y., Kurokawa, K., Kato, K & Tahara, H (1999) Effects of high temperature on the emergence and survival of adult Culex pipiens molestus and Culex quinquefasciatus in Japan. Journal of the American Mosquito Control Association, 15: 153-156PubMedGoogle Scholar
  300. Ohiagu, CE & Boreham, PFL (1978) A simple field test for evaluating insect prey-predator relationships. Entomologia exp. appl., 23: 40-7Google Scholar
  301. O’Meara GF, Larson VL, Mook DH, Latham MD (1989) Aedes bahamensis: its invasion of South Florida and association with Aedes aegypti. J Am Mosq Control Assoc 5: 1-5PubMedGoogle Scholar
  302. Paine, RT (1992) Food web analysis through field measurement of per capita in-teraction strength. Nature, 355: 73-75Google Scholar
  303. Pajot, F.-X (1975) Contribution a l’étude écologique d’Aedes (Stegomyia) simpsoni (Theobald, 1905) (Diptera: Culicidae). Études des gîtes larvaires en République Centrafricaine. Cah. ORSTOM, sér. Entomol. méd. Parasit., 13: 135-64Google Scholar
  304. Pajot, F. -X (1976) Contribution a l’étude écologique d’Aedes (Stegomyia) simp-soni (Theobald, 1905) (Diptera: Culicidae). Observations concernant les stages préimaginaux. Cah. ORSTOM, sér. Entomol. méd. Parasit., 16: 129-50Google Scholar
  305. Pajunen, VI (1983) The use of physiological time in the analysis of insect stage-frequency data. Oikos, 40: 161-5.Google Scholar
  306. Pajunen, VI (1986) How to construct and use realistic physiological time scales: an analysis of larval mortality in rock pool corixids (Hemiptera). Oikos, 47: 239-50Google Scholar
  307. Palchick, S., Schoof, DD., Tempelis, CH & Washino, RK (1986) Who is eating whom? An evaluation of an enzyme immunoassay for predator prey analyses. Proc. Calif. Mosq. & Vect. Contr. Ass., 53, 120Google Scholar
  308. Peters, TM & Barbosa, P (1977) Influence of population density on size, fecun-dity, and development rate of insects in culture. A. Rev. Ent., 22: 431-50Google Scholar
  309. Pickavance, JR (1970) A new approach to the immunological analysis of inverte-brate diets. J. Anim. Ecol., 39: 715-24Google Scholar
  310. Pielou, EC (1977) Mathematical Ecology. John Wiley & Sons, New York. x + 385 pp.Google Scholar
  311. Podoler, H. & Rogers, D (1975) A new method for the identification of key fac-tors from life table data. J. Anim. Ecol., 44: 85-114Google Scholar
  312. Poinar, GO (1979) Nematodes for Biological Control of Insects. CRC Press, Boca Raton, 217 pp.Google Scholar
  313. Pollard, E., Lakhani, KH & Rothery, P (1987) The detection of density-dependence from a series of annual censuses. Ecology, 68: 2046-55Google Scholar
  314. Pritchard, G & Scholefield, PJ (1980) Efficiency of the Enfield sampler for esti-mates of larval and pupal mosquito populations. Mosquito News, 40: 383-7Google Scholar
  315. Pritchard, G & Scholefield, PJ (1983) Survival of Aedes larvae in constant area ponds in southern Alberta (Diptera: Culicidae). Can. Ent., 115: 183-8Google Scholar
  316. Pritchard, G., Harder, LD & Mutch, RA (1996) Development of aquatic insect eggs in relation to temperature and strategies for dealing with different ther-mal environments. Biological Journal of the Linnean Society, 58: 221-244Google Scholar
  317. Prout, T (1980) Some relationships between density-independent selection and density-dependent population growth. Evolutionary biology, 13: 1-68Google Scholar
  318. Rae, DJ (1990) Survival and development of the immature stages of Culex annuli-rostris (Diptera: Culicidae) at the Ross River dam in tropical eastern Australia. J Med Entomol 27: 756-62PubMedGoogle Scholar
  319. Rai KS (1991) Aedes albopictus in the Americas. A. Rev. Ent., 36: 459-84Google Scholar
  320. Rajagopalan, PK., Yasuno, M & Russel, S (1975) Studies on the development and survival of immature stages of Culex fatigans in nature. J. Commun. Dis., 7: 10-14Google Scholar
  321. Rajagopalan, PK., Yasuno, M & Menon, PKB (1976a) Density effect on survival of immature stages of Culex pipiens fatigans in breeding sites in Delhi vil-lages. Indian J. med. Res., 64: 688-708PubMedGoogle Scholar
  322. Rajagopalan, PK., Brooks, GD & Menon, PKB (1976b) Estimation of natural sur-vival rates of immatures of Culex pipiens fatigans in open effluent drains in Faridabad, northern India. J. Commun. Dis., 8: 11-17Google Scholar
  323. Rajagopalan, PK., Menon, PKB & Brooks, GD (1977a) A study on some aspects of Culex pipiens fatigans population in an urban area, Faridabad, northern In-dia. Indian J. med. Res., 65 (Suppl.), 65-76PubMedGoogle Scholar
  324. Rajagopalan, PK., Curtis, CF., Brooks, GD & Menon, PKB (1977b) The density dependence of larval mortality of Culex pipiens fatigans in an urban situation and prediction of its effects on genetic control operations. Indian J. med. Res., 65 (Suppl.), 77-85PubMedGoogle Scholar
  325. Read, NR & Moon, RD (1996) Simulation of development and survival of Aedes vexans (Diptera: Culicidae) larvae and pupae. Environmental Entomology, 25: 1113-1121Google Scholar
  326. Reisen, WK (1975) Intraspecific competition in Anopheles stephensi Liston. Mosquito News, 35: 473-82Google Scholar
  327. Reisen, WK (1995) Effect of temperature on Culex tarsalis (Diptera: Culicidae) from the Coachella and San Joaquin Valleys of California. J Med Entomol 32: 636-645PubMedGoogle Scholar
  328. Reisen, WK & Emory, RW (1977) Intraspecific competition in Anopheles ste-phensi (Diptera: Culicidae). II. The effects of more crowded densities and the addition of antibiotics. Can. Ent., 109: 1475-80Google Scholar
  329. Reisen, WK & Mahmood, F (1980) Horizontal life table characteristics of the malaria vectors Anopheles culicifacies and Anopheles stephensi (Diptera: Culicidae). J Med Entomol 17: 211-17Google Scholar
  330. Reisen, WK & Siddiqui, TF (1979) Horizontal and vertical estimates of immature survivorship for Culex tritaeniorhynchus (Diptera: Culicidae) in Pakistan. J Med Entomol 16: 207-18PubMedGoogle Scholar
  331. Reisen, WK., Siddiqui, TF., Aslam, Y & Malik, GM (1979) Geographic variation among the life table characteristics of Culex tritaeniorhynchus from Asia. Ann. ent. Soc. Am., 72: 700-779Google Scholar
  332. Reisen, WK., Azra, K & Mahmood, F (1982) Anopheles culicifacies (Diptera: Cu-licidae): horizontal and vertical estimates of immature development and sur-vivorship in rural Punjab province, Pakistan. J Med Entomol 19: 413-22PubMedGoogle Scholar
  333. Reisen, WK., Meyer, RP., Shields, J & Arbolante, C (1989) Population ecology of preimaginal Culex tarsalis (Diptera: Culicidae) in Kern county, California. J Med Entomol 26: 10-22PubMedGoogle Scholar
  334. Renshaw, M (1991) ‘Population dynamics and ecology of Aedes cantans (Diptera: Culicidae) in England’ Unpublished Ph.D. thesis, University of Liverpool, 186 pp.Google Scholar
  335. Renshaw, M., Service, MW & Birley, MH (1993) Density-dependent regulation of Aedes cantans (Diptera: Culicidae) in natural and artificial populations. Eco-logical Entomology, 18: 223-233Google Scholar
  336. Richards, OW. (1961). The theoretical and practical study of natural insect popu-lations. A. Rev. Ent., 6: 147-62Google Scholar
  337. Richards, OW & Waloff, N (1954) Studies on the biology and population dynam-ics of British grasshoppers. Anti-Locust Bull., 17, 182 pp.Google Scholar
  338. Richards, OW., Waloff, N & Spradbery, JP (1960) The measurement of mortality in an insect population in which recruitment and mortality widely overlap. Oikos, 11: 306-10Google Scholar
  339. Ricker, WE (1944) Further notes on fishing mortality and effort. Copeia, 1944: 23-44Google Scholar
  340. Ricker, WE (1948) ‘Methods of Estimating Vital Statistics of Fish Populations’. Indiana Univ. Publ. Sci. Ser., 15: 101 pp.Google Scholar
  341. Ricklefs, RE (1973) Ecology. Nelson, London. x + 861 pp.Google Scholar
  342. Robert, V., Planchon, O., Lapetite, JM & Esteves, M (1999) Rainfall is not a di-rect mortality factor for anopheline larvae. Parasite, 6: 195-196PubMedGoogle Scholar
  343. Roberts, D (1998) Overcrowding of Culex sitiens (Diptera: Culicidae) larvae: population regulation by chemical factors or mechanical interference. J Med Entomol 35: 665-669PubMedGoogle Scholar
  344. Roberts, DR., Smith, LW & Enns, WR (1967) Laboratory observations on preda-tion activities of Laccophilus beetles in the immature stages of some dipterous pests found in Missouri oxidation lagoons. Ann. ent. Soc. Am., 60: 908-10Google Scholar
  345. Roberts, DW & Castillo, JM (1980) Bibliography on pathogens of medically im-portant arthropods: 1980. Bull World Health Organ 58 (Suppl.), 197 pp.Google Scholar
  346. Roberts, DW & Strand, MA (1977) Pathogens of medically important arthropods. Bull World Health Organ 55 (Suppl.), 419 pp.Google Scholar
  347. Roberts, DW., Daoust, RA & Wraight, SP (1983) Bibliography of pathogens of medically important arthropods: 1981. VBC/83.1, 324 pp.Google Scholar
  348. Rogers, DJ (1972) Random search and insect population models. Journal of Ani-mal Ecology, 41: 369-383Google Scholar
  349. Rogers, DJ (1983) Interpretation of sample data, pp. 139-160. In Pest and Vector Management in the Tropics with Particular Reference to Insects, Mites and Snails (edit. A Youdeowei & MW Service). Longman, London, xv + 399 pp.Google Scholar
  350. Roitberg BD, Mondor EB, Tyerman JGA (2003) Pouncing spider, flying mos-quito: blood acquisition increases predation risk in mosquitoes. Behavioral Ecology, 14: 736-740Google Scholar
  351. Rosen L, Rozeboom LE, Reeves WC, Saugrain J, Gubler DJ (1976) A field trial of competitive displacement of Aedes polynesiensis by Aedes albopictus on a Pacific atoll. Am. J. trop. Med. Hyg., 25: 906-13PubMedGoogle Scholar
  352. Rothschild, GHL (1966) A study of a natural population of Conomelus anceps Germar (Homoptera:Delphacidae) including observations on predation using the precipitin test. J. Anim. Ecol., 35: 423-33Google Scholar
  353. Royama, T (1971) A comparative study of models for predation and parasitism. Res. Pop. Ecol., Suppl., 1, 91 pp.Google Scholar
  354. Royama, T (1977) Population persistence and density dependence. Ecol. Monogr., 47: 1-35Google Scholar
  355. Royama, T (1981a) Fundamental concepts and methodology for the analysis of animal populations dynamics, with particular reference to univoltine species. Ecol. Monogr., 51: 473-93Google Scholar
  356. Royama, R (1981b) Evaluation of mortality factors in insect life table analysis. Ecol. Monogr., 51: 495-505Google Scholar
  357. Rozeboom LE (1971) Relative densities of freely breeding populations of Aedes (S.) polynesiensis Marks and A. (S.) albopictus Skuse. A large cage experi-ment. Am. J. trop. Med. Hyg., 20: 356-62PubMedGoogle Scholar
  358. Rozeboom LE, Bridges JR (1972) Relative population densities of Aedes albopic-tus and A. guamensis on Guam. Bull World Health Organ 46: 477-83PubMedGoogle Scholar
  359. Rudnick A (1965) Studies on the ecology of dengue in Malaysia: A preliminary report. J. med. Entomol. 2: 203-8PubMedGoogle Scholar
  360. Rudnick A, Hammon WM (1960) Newly recognized Aedes aegypti problems in Manila and Bangkok. Mosquito News, 20: 247-9Google Scholar
  361. Ruesink, WG (1975) Estimating time-varying survival of arthropod life stages from population diversity. Ecology, 56, 244-7Google Scholar
  362. Russell RC (1986) Larval competition between the introduced vector of dengue fever in Australia, Aedes aegypti (L.), and a native container-breeding mos-quito, Aedes notoscriptus (Skuse) (Diptera: Culicidae). Aust. J. Zool., 34: 527-34Google Scholar
  363. Russo RJ (1983) The functional response of Toxorhynchites rutilus rutilus (Dip-tera: Culicidae), a predator on container breeding mosquitoes. J Med Entomol 20: 585-590.Google Scholar
  364. Sawyer, AJ & Haynes, DL (1984) On the nature of errors involved in estimating stage-specific survival rates by Southwood’s method for a population with overlapping stages. Res. Popul. Ecol., 26, 331-51Google Scholar
  365. Schneider, P., Takken, W. & McCall, P. J. (2000). Interspecific competition be-tween sibling species larvae of Anopheles arabiensis and An. gambiae. Med Vet Entomol 14, 165-170PubMedGoogle Scholar
  366. Schreiber, ET., Meek, CL & Yates, MM (1988) Vertical distribution and species coexistence of tree hole mosquitoes in Louisiana. J Am Mosq Control Assoc 4, 9-14PubMedGoogle Scholar
  367. Scott, JA., Brogdon, WG & Collins, FH (1993) Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Ameri-can Journal of Tropical Medicine and Hygiene, 49, 520-529Google Scholar
  368. Seifert, RP (1980) Mosquito fauna of Heliconia aurea. J. Anim. Ecol., 49, 687-97Google Scholar
  369. Seifert, RP & Barrera, R (1981) Cohort studies on mosquito (Diptera: Culicidae) larvae living in the water-filled floral bracts of Heliconia aurea (Zingiberales: Musaceae). Ecol. Ent., 6: 191-7Google Scholar
  370. Sempala, SDK (1982) Estimation of the mortality of the immature stages of Aedes (Stegomyia) africanus Theobald in a tropical forest in Uganda. Insect Sci. Ap-plic., 2: 233-44Google Scholar
  371. Service MW (1966) The replacement of Culex nebulosus Theo. by Culex pipiens fatigans Wied. (Diptera, Culicidae) in towns in Nigeria. Bull Entomol Res 56: 407-15PubMedGoogle Scholar
  372. Service MW (1968) The taxonomy and biology of two sympatric sibling species of Culex, C. pipiens and C. torrentium (Diptera: Culicidae). J. Zool., Lond., 156: 313-23Google Scholar
  373. Service MW (1970) Studies on the biology and taxonomy of Aedes (Stegomyia) vittatus (Bigot) (Diptera: Culicidae) in northern Nigeria. Trans. R. ent. Soc. Lond., 122: 101-43Google Scholar
  374. Service MW (1971) Studies on sampling larval populations of the Anopheles gambiae complex. Bull World Health Organ 45: 169-80PubMedGoogle Scholar
  375. Service MW (1973a) Study of the natural predators of Aedes cantans (Meigen) us-ing the precipitin test. J Med Entomol 10: 503-10PubMedGoogle Scholar
  376. Service MW (1973b) Mortalities of the larvae of the Anopheles gambiae complex and detection of predators by the precipitin test. Bull Entomol Res 62: 359-69Google Scholar
  377. Service MW (1973c) Identification of predators of Anopheles gambiae resting in huts, by the precipitin test. Trans. R. Soc. trop. Med. Hyg., 67: 33-4Google Scholar
  378. Service MW (1976) Mosquito Ecology. Field Sampling Methods. Applied Science Publishers, xii + 583 pp.Google Scholar
  379. Service MW (1977a) Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spray-ing. J Med Entomol 13: 535-45PubMedGoogle Scholar
  380. Service MW (1977b) Ecological and biological studies on Aedes cantans (Meig.) (Diptera: Culicidae) in southern England. J. appl. Ecol., 14: 159-96Google Scholar
  381. Service MW (1983) Biological control of mosquitoes—has it a future? Mosquito News, 43: 113-20Google Scholar
  382. Service MW (1985a) Some ecological considerations basic to the biocontrol of Culicidae and other medically important arthropods, pp. 9-30 and 429-431 In Integrated Mosquito Control Methodologies, Volume 2. Biocontrol and Other Innovative Components and Future Directions (edit. M. Laird & J. W. Miles). Academic Press, London, xviii + 444 pp.Google Scholar
  383. Service MW (1985b) Population dynamics and mortalities of mosquito preadults, pp. 185-201. In Ecology of Mosquitoes: Proceedings of a Workshop (edit. LP Lounibos, JR Rey & JH Frank). Florida Medical Entomology Laboratory, Vero Beach, Florida, 579 pp.Google Scholar
  384. Service MW (1993) Mosquito Ecology. Field Sampling Methods. 2nd edn. Chap-man & Hall, LondonGoogle Scholar
  385. Service MW, Lyle P (1975) Detection of the predators of Simulium damnosum by the precipitin test. Ann Trop Med Parasitol 69: 105-108PubMedGoogle Scholar
  386. Service MW, Voller A, Bidwell DE (1986) The enzyme-linked immunosorbent assay (ELISA) test of the identification of blood-meals of haematophagous in-sects. Bull Entomol Res 76: 321-330Google Scholar
  387. Sheppard PM, Macdonald WW, Tonn RJ, Grab B (1969) The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J Anim Ecol 38: 661-702Google Scholar
  388. Sherratt TN, Tikasingh ES (1989) A laboratory investigation of mosquito larval predation by Toxorhynchites moctezuma on Aedes aegypti. Med Vet Entomol 3: 239-246PubMedGoogle Scholar
  389. Sibley RM, Smith RH (1998) Identifying key factors using lambda contribution analysis. J Anim Ecol 67: 17-24Google Scholar
  390. Slater JD, Pritchard G (1979) A stepwise computer program for estimating devel-opment time and survival of Aedes vexans (Diptera: Culicidae) larvae and pu-pae in field populations in southern Alberta. Can Entomol 111: 1241-1253Google Scholar
  391. Slobodkin LB (1962) Growth and Regulation of Animal Populations. Holt, Rinehart & Winston, New YorkGoogle Scholar
  392. Smith PT, Reisen WK, Cowles DA (1995) Interspecific competition between Culex tarsalis and Culex quinquefasciatus. J Vector Ecol 20: 139-146Google Scholar
  393. Smith RH (1973) The analysis of intra-generation change in animal popula-tions. J Anim Ecol 42: 611-622Google Scholar
  394. Solomon ME (1968) Logarithmic regression as a measure of population density response: comment on a report by G. W. Salt. Ecology 49: 357-358Google Scholar
  395. Solow AR, Steele JH (1990) On sample size, statistical power, and the detection of density dependence. J Anim Ecol 59: 1073-1076Google Scholar
  396. Sota T, Mogi M (1992) Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia 90: 353-358Google Scholar
  397. Southwood TRE (1967) The interpretation of population change. J Anim Ecol 36: 519-529Google Scholar
  398. Southwood TRE (1978) Ecological Methods with Particular Reference to the Study of Insect Populations. Chapman & Hall, LondonGoogle Scholar
  399. Southwood TRE (1988) Tactics, strategies and templets. Oikos 52: 3-18Google Scholar
  400. Southwood TRE, Henderson PA (2000) Ecological Methods. 3rd edn. Blackwell Science, OxfordGoogle Scholar
  401. Southwood TRE, Jepson WF (1962) Studies on the populations of Oscinella frit L. (Dipt.: Chloropidae) in the oat crop. J Anim Ecol 31: 481-495Google Scholar
  402. Southwood TRE, Murdie G, Yasuno M, Tonn RJ, Reader PM (1972) Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull World Health Organ 46: 211-226PubMedGoogle Scholar
  403. Spielman A, Feinsod FM (1979) Differential distribution of peridomestic Aedes mosquitoes on Grand Bahama Island. Trans R Soc Trop Med Hyg 73: 381-384PubMedGoogle Scholar
  404. St. Amani JLS (1970) The detection of regulation in animal populations. Ecology 51: 823-828Google Scholar
  405. Stav G, Blaustein L, Margalith J (1999) Experimental evidence for predation risk sensitive oviposition by a mosquito, Culiseta longiareolata. Ecol Entomol 24: 202-207Google Scholar
  406. Steffan WA (1970) Evidence of competitive displacement of Toxorhynchites bre-vipalpis Theobald by T. amboinensis Doleschall in Hawaii. Mosq Syst News-letter 2: 68Google Scholar
  407. Stewart RJ, Schaefer CH, Miura T (1983) Sampling Culex tarsalis (Diptera: Culi-cidae) immatures in rice fields treated with combinations of mosquitofish and Bacillus thuringiensis H-14 toxins. J Econ Entomol 76: 91-95PubMedGoogle Scholar
  408. Stewart RJ, Schaefer CH, Miura T (1985) Age structure and survivorship of Culex tarsalis in central California ricefields. Proc California Mosq Vector Control Assoc 52: 148-152Google Scholar
  409. Stewart-Oaten A, Murdoch WW (1990) Temporal consequences of spatial density dependence. J Anim Ecol 59: 1027-1045Google Scholar
  410. Stiling P (1988) Density-dependent processes and key factors in insect popula-tions. J Anim Ecol 57: 581-594Google Scholar
  411. Subra R (1983) The regulation of preimaginal populations of Aedes aegypti L. (Diptera: Culicidae) on the Kenya Coast. 1. Preimaginal population dynamics and the role of human behaviour. Ann Trop Med Parasitol 77: 195-201PubMedGoogle Scholar
  412. Subra R, Dransfield RD (1984) Field observations on competitive displacement, at the preimaginal stage, of Culex quinquefasciatus Say by Culex cinereus Theo-bald (Diptera: Culicidae) at the Kenya coast. Bull Entomol Res 74: 559-568Google Scholar
  413. Subra R, Service MW, Mosha FW (1984) The effect of domestic detergents on the population dynamics of the immature stages of two competitor mosquitoes, Culex cinereus Theobald and Culex quinquefasciatus Say (Diptera: Culicidae) in Kenya. Acta Trop 41: 69-75PubMedGoogle Scholar
  414. Sucharit S, Tumrasvin W (1981) Ovipositional attractancy of waters containing larvae of Aedes aegypti and Aedes albopictus. Jap J Sanit Zool 32: 261-264Google Scholar
  415. Sucharit S, Tumrasvin W, Vutikes S, Viraboonchai S (1978) Interactions between larvae of Aedes aegypti and Aedes albopictus in mixed experimental populations. Southeast Asian J Trop Med Public Health 9: 93-97Google Scholar
  416. Sulaiman S (1982) The ecology of Aedes cantans (Meigen) and biology of Culex pipiens in hibernation sites in northern England. Ph.D. thesis, University of LiverpoolGoogle Scholar
  417. Sulaiman S, Omar B, Omar S, Ghauth I, Jeffery J (1990) Detection of the preda-tors of Aedes albopictus (Skuse) (Diptera: Culicidae) by the precipitin test. Mosq-Borne Dis Bull 7: 1-4Google Scholar
  418. Sulaiman S, Pawanchee Z A, Karim MA, Jeffery J, Busparani V, Wahab A (1996) Serological identification of the predators of adult Aedes albopictus (Skuse) (Diptera: Culicidae) in rubber plantations and a cemetery in Malaysia. J Vec-tor Ecol 21: 22-25Google Scholar
  419. Suleman M (1990) Intraspecific variation in the reproductive capacity of Anophe-les stephensi (Diptera: Culicidae). J Med Entomol 27: 819-828PubMedGoogle Scholar
  420. Suleman M, Reisen WK (1979) Culex quinquefasciatus: Life table characteristics of adults reared from wild-caught pupae from north west frontier province, Pakistan. Mosquito News 39: 756-762Google Scholar
  421. Sunahara T, Mogi M (2002a) Priority effects of bamboo-stump mosquito larvae: influences of water exchange and leaf litter input. Ecol Entomol 27: 346-354Google Scholar
  422. Sunahara T, Mogi M (2002b) Variability of intra- and interspecific competitions of bamboo stump mosquito larvae over small and large spatial scales. Oikos 97: 87-96Google Scholar
  423. Sunahara T, Ishizaka K, Mogi M (2002) Habitat size: a factor determining the opportunity for encounters between mosquito larvae and aquatic predators. J Vector Ecol 27: 8-20PubMedGoogle Scholar
  424. Sunderland KD, Sutton SL (1980) A serological study of arthropod predation on woodlice in a dune grassland ecosystem. J Anim Ecol 49: 987-1004Google Scholar
  425. Sunderland KD, Crook NE, Stacey DL, Fuller BJ (1987) A study of feeding by phytophagous predators on cereal aphids using ELISA and gut dissection. J Appl Ecol 24: 907-933Google Scholar
  426. Sunish IP, Reuben R (2002) Factors influencing the abundance of Japanese en-cephalitis vectors in ricefields in India - II. Biotic. Med Vet Entomol 15: 1-9Google Scholar
  427. Sweeney AW, Becnel JJ (1991) Potential of microsporidia for the biological con-trol of mosquitoes. Parasitol Today 7: 217-220PubMedGoogle Scholar
  428. Takagi M, Sugiyama A, Maruyama K (1996) Survival of newly emerged Culex tritaeniorhynchus (Diptera: Culicidae) adults in field cages with or without predators. J Med Entomol 33: 698-701PubMedGoogle Scholar
  429. Teesdale C (1957) The genus Musa Linn. and its role in the breeding of Aedes (Ste-gomyia) simpsoni (Theo.) on the Kenya coast. Bull Entomol Res 48: 251-260Google Scholar
  430. Tempelis CH (1983) Adaptation of the enzyme-linked immunosorbent assay for the study of predator-prey relationships. In: Fotaine RE (ed) Mosquito Control Research, Annual Report 1983. University of California, Davis, pp. 34-51Google Scholar
  431. Teng HJ, Apperson CS (2000) Development and survival of immature Aedes al-bopictus and Aedes triseriatus (Diptera: Culicidae) in the laboratory: effects of density, food, and competition on response to temperature. J Med Entomol 37: 40-52PubMedGoogle Scholar
  432. Tianyun Su, Mulla MS (2001) Effects of temperature on development, mortal-ity, mating and blood feeding behavior of Culiseta incidens (Diptera: Culi-cidae). J Vector Ecol 26: 83-92Google Scholar
  433. Trpis M (1972a) Predator-Prey Oscillations in Populations of Larvae of Toxorhynchites brevipalpis and Aedes aegypti in a Suburban Habitat in East Africa. WHO/VBC/72.399, 12 pp. (mimeographed)Google Scholar
  434. Trpis M (1972b) Development and predatory behaviour of Toxorhynchites brevi-palpis (Diptera: Culicidae) in relation to temperature. Environ Entomol 1: 537-546Google Scholar
  435. Trpis M (1981) Survivorship and age-specific fertility of Toxorhynchites brevi-palpis females (Diptera: Culicidae). J Med Entomol 18: 481-486Google Scholar
  436. Tun-Lin W, Burkot TR, Kay BH (2000) Effect of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14: 31-37PubMedGoogle Scholar
  437. Tuno N, Okeka W, Minakawa N, Takagi M, Yan G (2005) Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western Kenya highland forest. J Med Entomol 42: 270-277PubMedGoogle Scholar
  438. Turnbull AL (1967) Population dynamics of exotic insects. Bull Entomol Soc Am 13: 333-337Google Scholar
  439. Urabe K, Sekijima Y, Ikemoto T, Aida C (1982) Studies on Sympetrum frequens (Odonata: Libellulidae) nymphs as natural enemies of the mosquito larvae, Anopheles sinensis, in the rice field. 1. Evaluation on an utilization of the electrosyneresis for the quantitative study of the prey-predator relationships. Jap J Sanit Zool 33: 55-60 (In Japanese, English summary)Google Scholar
  440. Van Valen L (1962) A study of fluctuating asymmetry. Evolution 16: 125-142Google Scholar
  441. Varley GC, Edwards RL (1957) The bearing of parasite behaviour on the dynam-ics of insect host and parasite populations. J Anim Ecol 26: 471-477Google Scholar
  442. Varley GC, Gradwell GR (1960) Key factors in population studies. J Anim Ecol 29: 399-401Google Scholar
  443. Varley GC, Gradwell GR (1963) The interpretation of insect population changes. Proc Ceylon AssocAdv Sci 18: 142-156Google Scholar
  444. Varley GC, Gradwell GR (1968) Population models for the winter moth. In: Southwood TRE (ed) Insect Abundance. Symposium of the Royal Entomo-logical Society of London No. 4. Blackwell Scientific Publications, Oxford, pp 132-142Google Scholar
  445. Varley GC, Gradwell GR (1970) Recent advances in insect population dynamics. Annu Rev Entomol 15: 1-24Google Scholar
  446. Varley GC, Gradwell GR, Hassell MP (1973) Insect Population Ecology, an Ana-lytical Approach. Blackwell Scientific Publications, OxfordGoogle Scholar
  447. Vickerman GP, Sunderland KD (1975) Arthropods in cereal crops: Nocturnal ac-tivity, vertical distribution and aphid predation. J Appl Ecol 12: 755-766Google Scholar
  448. Vickery WL (1991) An evaluation of bias in k-factor analysis. Oecologia 85: 413-419Google Scholar
  449. Wada Y, Mogi M (1974) Efficiency of the dipper in collecting immature stages of Culex tritaeniorhynchus summorosus. Trop Med 16: 35-40Google Scholar
  450. Wadsworth C (1957) A slide microtechnique for the analysis of immune precipi-tates in gel. Int Archs Allergy 10: 355-360Google Scholar
  451. Walker ED, Copeland RS, Paulson SL, Munstermann LE (1987) Adult survivor-ship, population density, and body size in sympatric populations of Aedes triseriatus and Aedes hendersoni (Diptera: Culicidae). J Med Entomol 24: 485-493PubMedGoogle Scholar
  452. Walton WE, Workman PD (1998) Effect of marsh design on the abundance of mosquitoes in experimental constructed wetlands in southern California. J Am Mosq Control Assoc 14: 95-107PubMedGoogle Scholar
  453. Walton WE, Tietz NS, Mulla MS (1990) Ecology of Culex tarsalis (Diptera: Culicidae): factors influencing larval abundance in mecocosms in southern California. J Med Entomol 27: 57-67PubMedGoogle Scholar
  454. Washburn JO, Anderson JR (1993) Habitat overflow, a source of larval mortality for Aedes sierrensis (Diptera: Culicidae). J Med Entomol 30: 802-804PubMedGoogle Scholar
  455. Watanabe M, Wada Y (1968) Studies on predators of larvae of Culex tritaenio-rhynchus summorosus Dyar. Jap J Sanit Zool 19: 35-38 (In Japanese, English summary)Google Scholar
  456. Watson TF (1964) Influence of host plant condition on population increase of Tetranychus telarius (Linnaeus) (Acarina: Tetranychidae). Hilgardia 35: 273-322Google Scholar
  457. Watt KEF (1959) A mathematical model for the effect of densities of attacked and attaching species on the number attacked. Can Entomol 91: 129-144Google Scholar
  458. Weidhaas DE (1974) Simplified models of population dynamics related to control technology. J Econ Entomol 67: 620-624PubMedGoogle Scholar
  459. Weidhaas DE, Patterson RS, Lofgren CS, Ford HR (1971) Bionomics of a popula-tion of Culex pipiens quinquefasciatus Say. Mosquito News 31: 177-182 Google Scholar
  460. Weidhaas DE, LaBrecque GC, Lofgren CS, Schmidt CH (1972) Insect sterility in population dynamics research. Bull World Health Organ 47: 309-315PubMedGoogle Scholar
  461. Weidhaas DE, Breeland SG, Lofgren CS, Dame DA, Kaiser R (1974) Release of chemosterilized males for the control of Anopheles albimanus in El Salvador. IV. Dynamics of the test population. Am J Trop Med Hyg 23: 298-308PubMedGoogle Scholar
  462. Weiser J (1991) Biological Control of Vectors. Manual for Collecting, Field De-termination and Handling of Biofactors for Control of Vectors. John Wiley, ChichesterGoogle Scholar
  463. West AS, Eligh GS (1952) The rate of blood digestion in mosquitoes. Precipitin test studies. Can J Zool 30: 267-272Google Scholar
  464. Wijeyaratne P, Seawright JA, Weidhaas DE (1974) Development and survival of a natural population of Aedes aegypti. Mosquito News 34: 36-42Google Scholar
  465. Willems KJ, Webb CE, Russell RC (2005) Tadpoles of four common Australian frogs are not effective predators of the common pest and vector mosquito Culex annulirostris. J Am Mosq Control Assoc 21: 492-494PubMedGoogle Scholar
  466. Wohlschlag DE (1954) Mortality rates of whitefish in an arctic lake. Ecology 35: 388-396Google Scholar
  467. Yasuda H, Hashimoto T (1995) Prey density effect on cannibalism by Toxorhynchites towadensis (Diptera: Culicidae). J Med Entomol 32: 650-653PubMedGoogle Scholar
  468. Yasuno M (1974) Ecology of Culex pipiens fatigans in rural Delhi, India. J Com-mun Dis 6: 106-116Google Scholar
  469. Ye-Ebiyo Y, Pollack RJ, Kiszewski A, Spielman A (2003) Enhancement of devel-opment of larval Anopheles arabiensis by proximity to flowering maize (Zea mays) in turbid water and when crowded. Am J Trop Med Hyg 68: 748-752PubMedGoogle Scholar
  470. Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can mul-tiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8: 2081-2087PubMedGoogle Scholar
  471. Zani PA, Cohnstaedt LW, Corbin D, Bradshaw WE, Holzapfel CM (2005) Repro-ductive value in a complex life cycle: heat tolerance of the pitcher-plant mos-quito, Wyeomyia smithii. J Evol Biol 18: 101-105PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Personalised recommendations