Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 353))

In Chapter 5 the FLR-theory was formulated within the framework of a 'plasma box' model: with 1D inhomogeneity across straight field-lines. Despite the seeming simplicity of the model, the spectral properties of the relevant system of MHD equations turned out to be non-trivial. Such a magnetospheric model is a rare example of a spatially confined physical system in which a continuous spectrum appears. The eigenmode equation for standing toroidal shear Alfvén waves has been derived for the dipole case by Dungey [17], Cummings et al. [14] and by many other authors. Basic ideas of FLR-theory that guided much of the subsequent research of the FLR in complex plasma con- figurations can be found in ([7], [50]), the basic mathematics is given in [30]. Numerous papers are devoted to consideration of 2-D and 3-D cases and semikinetic approaches (see [2], [9], [25], [26], [27], [31], [35], [49], [51], [55], [59], [64], [65] and references therein).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, W., S. P. White, and E. M. Poulter, pulse-excited hydromagnetic cavity and field resonances in the magnetosphere, Planet. Space. Sci., 34, 371, 1986.

    Article  ADS  Google Scholar 

  2. Allan, W. and D. R. McDiarmid, Magnetospheric cavity modes: numerical model of a possible case, J. Geophys. Res., 94, 309, 1989.

    Article  ADS  Google Scholar 

  3. Angerami, J. J. and J. O. Thomas, The distribution of ions and electrons in the Earth’s exosphere, J. Geophys. Res., 69, 4537, 1964.

    Article  ADS  MATH  Google Scholar 

  4. Bhatacharjee, A., C. A. Kletzing, Z. W. Ma, C. S. Ng, N. F. Otani, and X. Wang, Fourfield model for dispersive fieldline resonances: Effects of coupling between shear Alfvén and slow modes, Geophys. Res. Lett., 26, 3281, 1999.

    Article  ADS  Google Scholar 

  5. Bilitza, D., IRI 2000, Radio Science, 36, 261, 2001.

    Article  ADS  Google Scholar 

  6. Boyce, W. E. and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 7th edn., John Wiley & Sons, Inc., New York, 2001.

    Google Scholar 

  7. Chen, L., and A. Hasegawa, Plasma heating by spatial resonance of Alfvén wave, Phys. Fluids, 17, 1399, 1974.

    Article  ADS  Google Scholar 

  8. Chen, L., and A. Hasegawa, A theory of long period magnetic pulsations, 1, steady state excitation of field line resonance, J. Geophys. Res., 79, 1024, 1974.

    Article  ADS  Google Scholar 

  9. Chen, L., and S. C. Cowley, On field line resonances of hydromagnetic Alfvén waves in dipole magnetic field, Geophys. Res. Lett., 16, 895, 1989.

    Article  ADS  Google Scholar 

  10. Cheng, C. Z., T. C. Chang, C. A. Lin, and W. H. Tsai, Magnetohydrodynamics theory of field line resonances in the magnetosphere, J. Geophys. Res., 98, 11339, 1993.

    Article  ADS  Google Scholar 

  11. Cheng, C. Z., Three-dimensional magnetospheric equilibrium with isotropic pressure, Geophys. Res. Lett., 22, 2401, 1995.

    Article  ADS  Google Scholar 

  12. Cheng, C. Z., MHD field line resonances and global modes in three-dimensional magnetic fields, J. Geophys. Res., 108(A1), 1002, doi:10.1029/2002JA009470, 2003.

    Article  Google Scholar 

  13. Cheng, C. Z. and S. Zaharia, field line resonances in quiet and disturbed time three-dimensional magnetospheres, J. Geophys. Res., 108(A1), 1001, 2003.

    Article  Google Scholar 

  14. Cummings, W. D., R. J. O’Sullivan, and P. J. Coleman, Standing Alfvén waves in the magnetosphere, J. Geophys. Res., 74, 778, 1969.

    Article  ADS  Google Scholar 

  15. . Denton, R. E., K. Takahashi, R. R. Anderson, and M. P. Wuest , Magnetospheric toroidal Alfvén wave harmonics and the field line distribution of mass density, J. Geophys. Res., 109, doi: 10. 1029/ 2003JA010201, 2004.

    Google Scholar 

  16. . Denton, R. E., J. D. Menietti, J. Goldstein, S. L. Young, and R. R. Anderson, Electron density in the magnetosphere, J. Geophys. Res., 109, A09215, doi: 10. 1029/ 2003JA010245, 2004.

    Google Scholar 

  17. . Dungey, J. W., The propagation of AlfvCn waves through the ionosphere. Ionospheric Res. Sci. Rpt. No. 57, Pennsylvania State Univ., 19, 1954.

    Google Scholar 

  18. Eviatar, A., A. M. Lenchek, and S. F. Singer, Distribution of density in an ion-exosphere of a non-rotating planet, Phys. Fluids, 7, 1775, 1964.

    Article  ADS  Google Scholar 

  19. Fedorov, E. N., B. N. Belen’kaya, M. B. Gokhberg, S. P. Belokris, L. N. Baransky, and C. A. Green, Planet. Space Sci., 38, 269, 1990.

    Article  ADS  Google Scholar 

  20. Fedorov, E. N., N. G. Mazur, V. A. Pilipenko, and K. Yumoto, On the theory of field line resonances in plasma configurations, Phys. Plasmas, 2, 527, 1995.

    Article  ADS  Google Scholar 

  21. Fedorov, E., V. Pilipenko, and M. J. Engebretson, ULF wave damping in the auroral acceleration region, J. Geophys. Res., 106, 6203, 2001.

    Article  ADS  Google Scholar 

  22. Fedorov, E., V. Pilipenko, M. J. Engebretson, and T. J. Rosenberg, Alfvén wave modulation of the auroral acceleration region, Earth Planets Space, 56, 649,2004.

    ADS  Google Scholar 

  23. Grossmann, W., and J. Tataronis, Decay of MHD waves by phase mixing-The Theta-Pinch in cylindrical geometry, Z. Physik., 261, 217, 1973.

    Article  ADS  Google Scholar 

  24. Hansen, P. J., and C. K. Goertz, Validity of the field line resonance expansion, Phys. Fluids, B4, 2713, 1992.

    ADS  Google Scholar 

  25. Inhester, B., Resonance absorption of Alfvén oscillations in a nonaxixymmetric magnetosphere, J. Geophys. Res., 91, 1509, 1986.

    Article  ADS  Google Scholar 

  26. Kivelson, M. G. and D. J. Southwood, Coupling of global maqgnetospheric MHD eigenmodes to field line resonances, J. Geophys. Res., 91, 4345, 1986.

    Article  ADS  Google Scholar 

  27. Klimushkin, D. Yu., A. S. Leonovich, and V. A. Mazur, On the propagation of transversally small scale standing Alfvén waves in a three dimensionally inhomogeneous magnetosphere, J. Geophys. Res., 100, 9527, 1995.

    Article  ADS  Google Scholar 

  28. Klimushkin, D. Yu., Resonators for hydromagnetic waves in the magnetosphere, J. Geophys. Res., 103, 2369, 1998.

    Article  ADS  Google Scholar 

  29. Knudsen, D. J., M. C. Kelley, and J. F. Vickrey, Alfvén waves in the auroral ionosphere: A numerical model compared with measurements, J. Geophys. Res., 97,77,1992.

    Article  ADS  Google Scholar 

  30. Krylov, A. L. and E. N. Fedorov, Concerning eigen oscillations of bounded volume of a cold magnetzed plasma, Doklady AN SSSR, 231, 68, 1976.

    ADS  Google Scholar 

  31. Krylov, A. L., A. E. Lifshitz, and E. N. Fedorov, On the plasma resonances in a curvelinear magnetic field, Doklady AN SSSR, 247, 1095, 1979.

    ADS  Google Scholar 

  32. Krylov, A. L., A. E. Lifshitz, and E. N. Fedorov, About rezonant properties of the magnetospheric field-lines, Geomagn. and Aeronomy, 20, 689, 1980.

    ADS  Google Scholar 

  33. Krylov, A. L., A. E. Lifshitz, and E. N. Fedorov, About rezonant properties of the magnetosphere, Izv. Akad. Nauk SSSR, Fiz. Zemli, 6, 49, 1981.

    Google Scholar 

  34. Krylov, A. L. and A. E. Lifshitz, Quasi-Alfvén oscillations of magnetic surfaces, Planet. Space Sci., 32, 481, 1984.

    Article  ADS  Google Scholar 

  35. Leonovich, A. S. and V. A. Mazur, Resonance eacitation of standing Alfvén waves in an axisymmetytric magnetosphere (monochromatic oscillations), Planet. Space Sci., 37, 1095, 1989.

    Article  ADS  Google Scholar 

  36. Leonovich, A. S. and V. A. Mazur, On the spectrum the magnetocpheric eigenoscillations of an axisymmetytric magnetosphere, J. Geophys. Res., 106, 3919,2001.

    Article  ADS  Google Scholar 

  37. Leonovich, A. S. and V. A. Mazur, Self-consistent model of a dipole-like magnetosphere with an azimutal solar wind flow, J. Plasma Physics., 70, 99, 2004.

    Article  ADS  Google Scholar 

  38. Lee, D. H. and R. L. Lysak, ULF wave coupling in the dipole model: the pulse exitation, J. Geophys. Res., 94, 17097, 1989.

    Article  ADS  Google Scholar 

  39. Lee, D. H. and R. L. Lysak, Effects of azimuthal asymmetry on ULF waves in the dipole magnetosphere, Geophys. Res. Lett., 17, 53, 1990.

    Article  ADS  Google Scholar 

  40. Lifshitz, A. E. and E. N. Fedorov, Doklady AN SSSR, 287, 90, 1986.

    ADS  Google Scholar 

  41. . Lysak, R. L., Magnetosphere-ionosphere coupling by Alfvén waves at midlatitudes, J. Geophys. Res., 109, A07201, doi:10.1029/2004JA010454, 2004.

    Google Scholar 

  42. Mann, I. R., On the internalradial structure of field line resonances, J. Geophys. Res., 102, 27, 1997.

    Google Scholar 

  43. Mann, I. R., A. N. Wright, K. Mills, and V. M. Nakariakov, Excitation of magnetospheric waveguide modes by magnetosheath flows, J. Geophys. Res., 104, 333,1999.

    Article  ADS  Google Scholar 

  44. Mazur, N. G., E. N. Fedorov, and V. A. Pilipenko, On the Possibility of reflection of Alfvén waves in a curvilinear magnetic field , Plasma Physics Reports, 30, 413,2004.

    Article  ADS  Google Scholar 

  45. Mond, M., E. Hameiri, and P. N. Hu, J. Geophys. Res., 95, 89, 1990.

    Article  ADS  Google Scholar 

  46. . Ozeke, L. G. and I. R. Mann, Modeling the properties of guided poloidal Alfvén waves with finite asymmetric, ionospheric conductivities in a dipole field, J. Geophys. Res., 109, A05205, doi:10.1029/2003JA010151, 2004.

    Google Scholar 

  47. . Pilipenko, V., E. Fedorov, M. J. Engebretson, and K. Yumoto, Energy budget of Alfvén wave interactions with the auroral acceleration region, J. Geophys. Res., 109, A10204, doi:10.1029/2004JA010440, 2004.

    Google Scholar 

  48. Rankin, R., P. Frycz, and V. T. Tikhonchuk, Shear Alfvén waves on stretched field-lines near midnight in the Earth’s magnetosphere, Geophys. Res. Lett., 27, 3265,2000.

    Article  ADS  Google Scholar 

  49. Singer, H. J., D. J. Southwood, R. J. Walker, and M. G. Kivelson, Alfvén wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res., 86, 4589, 1981.

    Article  ADS  Google Scholar 

  50. Southwood, D. J., Some features of field line resonances in the magnetosphere, Planet. Space Sci., 22, 483, 1974.

    Article  ADS  Google Scholar 

  51. Southwood, D. J. and M.G. Kivelson, The effect of parallel inhomogeneity on magnetospheric wave coupling, J. Geophys. Res., 91, 6871, 1986.

    Article  ADS  Google Scholar 

  52. Southwood, D. J. and M. A. Saunders, Curvature coupling of slow and Alfvén MHD waves in a magnetotail field configuration, Planet. Space Sci., 33, 127, 1985.

    Article  ADS  Google Scholar 

  53. Streltsov, A. and W. Lotko, Dispersive field line resonances on auroral field-lines, J. Geophys. Res., 100, 19, 457, 1995.

    Google Scholar 

  54. . Schindler, K. and J. Birn, MHD stability of magnetotail. equilibria including a background pressure, J. Geophys. Res., 109, A10208, doi: 10. 1029/ 2004JA010537, 2004.

    Google Scholar 

  55. Schulze-Berge, S., S. Cowley, and L. Chen, Theory of field line resonances of standing sheatr Alfvén waves in three-dimensional inhomogeneous plasmas, J. Geophys. Res., 97, 3219, 1992.

    Article  ADS  Google Scholar 

  56. Takahashi, K., C. Z. Cheng, R. W. McEntire, and L. M. Kistler, Observation and theory of P c5 waves with harmonically related transverse and compressional components, J. Geophys. Res., 95, 977, 1990.

    Article  ADS  Google Scholar 

  57. . Takahashi, K., R. E. Denton, and D. Gallagher, Toroidal wave frequency at L = 6 − 10: Active Magnetospheric Particle Tracer Explorers/CCE observations and comparison with theoretical model, J. Geophys. Res., 107 (A2), 2002.

    Google Scholar 

  58. Tataronis, J., and W. Grossmann, Decay of MHD waves by phase mixing, I, The sheet pinch in plane geometry, Z. Phys., 261, 203, 1973.

    Article  Google Scholar 

  59. Thompson, M. J. and A. N. Wright, Resonant Alfvén wave excitation in twodimensional systems: Singularities in partial differential equations, J. Geophys. Res., 98, 15541, 1993.

    Article  ADS  Google Scholar 

  60. . Timofeev, A. V., To the theory of Alfven oscillations in an inhomogeneous plasma, in Reviews of Plasma Physics, (Ed. by M. A. Leontovich), 9, 205, Plenum Publishing Corp., 1979.

    Google Scholar 

  61. Uberoi, C., The Alfvén wave equation for magnetospheric plasmas, J. Geophys. Res., 93, 295 1988.

    Article  ADS  Google Scholar 

  62. Uberoi, C., Resonant Alfvén wave exitation in two-dimensional systems, J. Geophys. Res., 101, 13345 (1996).

    Article  ADS  Google Scholar 

  63. Wasow, W., Asymptotic Expansions for Ordinary Differential Equations, J. Wiley, New York, 1965.

    MATH  Google Scholar 

  64. Wright, A. N., MHD wave coupling in inhomogeneous media, Geophys. Res. Lett., 18, 1951, 1991.

    Article  ADS  Google Scholar 

  65. Wright, A. N. and M. J. Thompson, Analytical treatment of Alfvén resonances and singularities in nonuniform magnetoplasmas, Phys. Plasmas, 1, 691, 1994.

    Article  ADS  Google Scholar 

  66. Wright, A. N., K. J. Mills, A. W. Longbottom, and M. S. Ruderman, The nature of convectively unstable waveguide mode disturbances on the magnetospheric flanks, J. Geophys. Res, 107, 1242, 2002.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

(2007). FLR in Plasma Configurations. In: Hydromagnetic Waves in the Magnetosphere and the Ionosphere. Astrophysics and Space Science Library, vol 353. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6637-5_6

Download citation

Publish with us

Policies and ethics