Skip to main content

Impact of Fauna on Chemical Transformations in Soil

  • Chapter
Book cover Soil Biological Fertility

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott I, Parker C A and Sills I D 1979 Changes in the abundance of large soil animals and physical properties of soils following cultivation. Australian Journal of Soil Research 17: 343-353.

    Article  Google Scholar 

  • Alvarez T, Frampton G K and Goulson D 2001 Epigeic collembola in winter wheat under organic, integrated and conventional farm management regimes. Agriculture, Ecosystems and Environment 83: 95-110.

    Article  Google Scholar 

  • Anderson J M, Ineson P and Huish S A 1983 Nitrogen and cation mobilisation by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands. Soil Biology and Biochemistry 15: 463-467.

    Article  Google Scholar 

  • Andrén O, Brussaard L and Clarholm M 1999 Soil organism influence on ecosystemlevel processes - bypassing the ecological hierarchy? Applied Soil Ecology 11: 177-188.

    Article  Google Scholar 

  • Andrén O, Bengtsson J and Clarholm M 1995 Biodiversity and species redundancy among litter decomposers. In: The Significance and Regulation of Soil Biodiversity. H P Collins, G P Robertson and M J Klug (eds) pp. 141-151. Kluwer Academic Publishers. The Netherlands.

    Google Scholar 

  • Badejo M A, Tian G and Brussaard L 1995 Effects of various mulches on soil microarthropods under a maize crop. Biology and Fertility of Soils 20: 294-298.

    Article  Google Scholar 

  • Baker G H 1998 Recognising and responding to the influences of agriculture and other land-use practices on soil fauna in Australia. Applied Soil Ecology 9: 303-310.

    Article  Google Scholar 

  • Bardgett R D and Cook R 1998 Functional aspects of soil animal diversity in agricultural grasslands. Applied Soil Ecology 10: 263-276.

    Article  Google Scholar 

  • Beare M 1997 Fungal and bacterial pathways of organic matter decomposition and nitrogen mineralisation in arable soils. In: Soil Ecology in Sustainable Agricultural Systems. L Brussaard and R Ferrera-Cerrato (eds.) pp. 37-70. CRC Press. USA.

    Google Scholar 

  • Beare M H, Parmelee R W, Hendrix P F, Cheng W, Coleman D C and Crossley D A 1992 Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecological Monographs 62: 569-591.

    Article  Google Scholar 

  • Blair J M, Parmelee R W, Allen M F, McCartney D A and Stinner B R 1997 Changes in soil N pools in response to earthworm population manipulations in agroecosystems with different N sources. Soil Biology and Biochemistry 29: 361-367.

    Article  CAS  Google Scholar 

  • Blair J M, Crossley D A and Callaham L C 1992 Effects of litter quality and microarthropods on N dynamics and retention of exogenous 15N in decomposing litter. Biology and Fertility of Soils 12: 241-252.

    Article  CAS  Google Scholar 

  • Blakemore R J 1997 Agronomic potential of earthworms in brigalow soils of south-east Queensland. Soil Biology and Biochemistry 29: 603-608.

    Article  CAS  Google Scholar 

  • Brussaard L, Bakker J P and Olff H 1996 Biodiversity of soil biota and plants in abandoned arable fields and grasslands under restoration management. Biodiversity and Conservation 5: 211-221.

    Article  Google Scholar 

  • Buckerfield J C and Wiseman D M 1997 Earthworm populations recover after potato cropping. Soil Biology and Biochemistry 29: 609-612.

    Article  CAS  Google Scholar 

  • Chan K Y 2001 An overview of some tillage impacts on earthworm population abundance and diversity - implications for functioning in soils. Soil and Tillage Research 57: 179-191.

    Article  Google Scholar 

  • Coûteaux M, Mousseau M, Celerier M and Bottner P 1991 Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61: 54-64.

    Article  Google Scholar 

  • Crossley D A, Mueller B R and Perdue J C 1992 Biodiversity of microarthropods in agricultural soils: relations to processes. Agriculture, Ecosystems and Environment 40: 37-46.

    Article  Google Scholar 

  • Curry J P and Good J A 1992 Soil faunal degradation and restoration. Advances in Soil Science 17: 171-215.

    Google Scholar 

  • Dangerfield J M 1990 Abundance, biomass and diversity of soil macrofauna in savanna woodland and associated managed habitats. Pedobiologia 34: 141-150.

    Google Scholar 

  • de Ruiter P C, Bloem J, Bouwman L A, Didden W A M, Hoenderboom G H J, Lebbink G, Marinissen J C Y, de Vos J A, Vreeken-Buijs M J, Zwart K B and Brussaard L 1994 Simulation of dynamics in nitrogen mineralisation in the belowground food webs of two arable farming systems. Agriculture, Ecosystems and Environment 51: 199-208.

    Article  Google Scholar 

  • de Ruiter P C, Moore J C, Zwart K B, Bouwman L A, Hassink J, Bloem J, de Vos J A, Marinissen J C Y, Didden W A M, Lebbink G and Brussaard L 1993 Simulation of nitrogen mineralisation in the belowground food webs of two winter wheat fields. Journal of Applied Ecology 30: 95-106.

    Article  Google Scholar 

  • Didden W A M, Marinissen J C Y, Vreeken-Buijs M J, Burgers S L G E, de Fluiter R, Geurs M and Brussaard L 1994 Soil meso- and macrofauna in two agricultural systems: factors affecting population dynamics and evaluation of their role in carbon and nitrogen dynamics. Agriculture, Ecosystems and Environment 51: 171-186.

    Article  Google Scholar 

  • Douce G K and Crossley D A 1982 The effect of soil fauna on litter mass loss and nutrient loss dynamics in arctic tundra at Barrow, Alaska. Ecology 63: 523-537.

    Article  Google Scholar 

  • Elliott E T, Horton K, Moore J C, Coleman D C and Cole C V 1984 Mineralisation dynamics in fallow dryland wheat plots, Colorado. Plant and Soil 76: 149-155.

    Article  CAS  Google Scholar 

  • Foissner W 1992 Comparative studies on the soil life in ecofarmed and conventionally farmed fields and grasslands of Austria. Agriculture, Ecosystems and Environment 40: 207-218.

    Article  Google Scholar 

  • Franchini P and Rockett C L 1996 Oribatid mites as "indicator" species for estimating the environmental impact of conventional and conservation tillage practices. Pedobiologia 40: 217-225.

    Google Scholar 

  • Garrett C J, Crossley D A, Coleman D C, Hendrix P F, Kisselle K W and Potter R L 2001 Impact of the rhizosphere on soil microarthropods in agroecosystems on the Georgia piedmont. Applied Soil Ecology 16: 141-148.

    Article  Google Scholar 

  • Ghuman B S and Sur H S 2001 Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate. Soil and Tillage Research 58: 1-10.

    Article  Google Scholar 

  • Giller K E, Beare M H, Lavelle P, Izac A M N and Swift M J 1997 Agricultural intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology 6: 3-16.

    Article  Google Scholar 

  • Greenslade P and Majer J D 1993 Recolonisation by collembola of rehabilitated bauxite mines in Western Australia. Australian Journal of Ecology 18: 385-394.

    Article  Google Scholar 

  • Hanlon R D G and Anderson J M 1980 Influence of macroarthropod feeding activities on microflora in decomposing oak leaves. Soil Biology and Biochemistry 12: 255-261.

    Article  Google Scholar 

  • Hanlon R D G and Anderson J M 1979 The effects of collembola grazing on microbial activity in decomposing leaf litter. Oecologia 38: 93-99.

    Article  Google Scholar 

  • Hansen R A 1999 Red oak litter promotes a microarthropod functional group that accelerates decomposition. Plant and Soil 209: 37-45.

    Article  CAS  Google Scholar 

  • Hansen S and Engelstad F 1999 Earthworm populations in a cool and wet district as affected by tractor traffic and fertilisation. Applied Soil Ecology 13: 237-250.

    Article  Google Scholar 

  • Heal O W, Anderson J M and Swift M J 1997 Plant litter quality and decomposition: an historical overview. In: Driven by Nature: Plant Litter Quality and Decomposition. G Cadisch and G E Giller (eds.) pp. 3-30. CAB International, Wallingford, Oxon. UK.

    Google Scholar 

  • Hendrix P F, Parmelee R W, Crossley D A, Coleman D C, Odum E P and Groffman P M 1986 Detritus food webs in conventional and no-tillage agroecosystems. Bioscience 36: 374-380.

    Article  Google Scholar 

  • Hendrix P F and Parmelee R W 1985 Decomposition, nutrient loss and microarthropod densities in herbicide-treated grass litter in a Georgia piedmont agroecosystem. Soil Biology and Biochemistry 17: 421-428.

    Article  CAS  Google Scholar 

  • Heneghan L, Coleman D C, Zou X, Crossley D A and Haines B L 1999 Soil microarthropod contributions to decomposition dynamics: tropical-temperate comparisons of a single substrate. Ecology 80: 1873-1882.

    Google Scholar 

  • Heneghan L and Bolger T 1996 Effects of components of ‘acid rain’ on the contribution of soil microarthropods to ecosystem functioning. Journal of Applied Ecology 33: 1329-1344.

    Article  Google Scholar 

  • House G J, Worsham A D, Sheets T J and Stinner R E 1987 Herbicide effects on soil arthropod dynamics and wheat straw decomposition in a North Carolina no-tillage agroecosystem. Biology and Fertility of Soils 4: 109-114.

    Article  CAS  Google Scholar 

  • Hunt H W, Coleman D C, Ingham E R, Ingham R E, Elliot E T, Moore J C, Rose S L, Reid C P P and Morley C R 1987 The detrital food web in a shortgrass prairie. Biology and Fertility of Soils 3: 57-68.

    Article  Google Scholar 

  • Ingham E R, Coleman D C and Moore J C 1989 An analysis of food-web structure and function in a shortgrass prairie, a mountain meadow, and a lodgepole pine forest. Biology and Fertility of Soils 8: 29-37.

    Article  Google Scholar 

  • Jarvis S C, Stockdale E A, Shepherd M A and Powlson D S 1996 Nitrogen mineralisation in temperate agricultural soils: processes and measurement. Advances in Agronomy 57: 187-235.

    CAS  Google Scholar 

  • Ji R and Brune A 2001 Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognathus. Biology and Fertility of Soils 33: 166-174.

    Article  CAS  Google Scholar 

  • Kaneko N, McLean M A and Parkinson D 1998 Do mites and Collembola affect pine litter fungal biomass and microbial respiration? Applied Soil Ecology 9: 209-213.

    Article  Google Scholar 

  • Kautz G and Topp W 2000 Acquisition of microbial communities and enhanced availability of soil nutrients by the isopod Porcellio scaber (Latr.) (Isopoda: Oniscidea). Biology and Fertility of Soils 31: 102-107.

    Article  CAS  Google Scholar 

  • Kumar K and Goh K M 2000 Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Advances in Agronomy 68: 197-319.

    CAS  Google Scholar 

  • Kushwaha C P, Tripathi S K and Singh K P 2001 Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Applied Soil Ecology 16: 229-241.

    Article  Google Scholar 

  • Laakso J and Setälä H 1999 Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87: 57-64.

    Article  Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A, Toutain F, Barios I and Schaefer R 1993 A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25: 130-150.

    Article  Google Scholar 

  • Lavelle P and Pashanasi B 1989 Soil macrofauna and land management in Peruvian Amazonia (Yurimagus, Loreto). Pedobiologia 33: 283-291.

    Google Scholar 

  • Longstaff B C, Greenslade P J M, Colloff M, Reid I, Hart P and Packer I 1999 Managing soils in agriculture, the impact of soil tillage practices on soil fauna. RIRDC Publication No. 99/18. Canberra, Australia.

    Google Scholar 

  • McIntosh P D, Gibson R S, Saggar S, Yeates G W and McGimpsey P 1999. Effect of contrasting farm management on vegetation and biochemical, chemical, and biological condition of moist steepland soils of the South Island high country, New Zealand. Australian Journal of Soil Research 37: 847-865.

    Article  Google Scholar 

  • Mebes K H and Filser J 1998 Does the species composition of Collembola affect nitrogen turnover? Applied Soil Ecology 9: 241-247.

    Article  Google Scholar 

  • Mikola J and Setälä H 1998 Relating species diversity to ecosystem functioning: mechanistic backgrounds and experimental approach with a decomposer food web. Oikos 83: 180-194.

    Article  Google Scholar 

  • Mikola J, Yeates G W, Wardle D A, Barker G M and Bonner K I 2001. Response of soil food-web structure to defoliation of different plant species combinations in an experimental grassland community. Soil Biology and Biochemistry 33: 205-214.

    Article  CAS  Google Scholar 

  • Moore J C, Walter D E and Hunt H W 1988 Arthropod regulation of micro- and mesobiota in below-ground detrital food webs. Annual Review of Entomology 33: 419-439.

    Google Scholar 

  • Murphy D V, Sparling G P, Fillery I R P, McNeill A M and Braunberger P 1998 Mineralisation of soil organic nitrogen and microbial respiration after simulated summer rainfall events in an agricultural soil. Australian Journal of Soil Research 36: 231-246.

    Article  Google Scholar 

  • Neave P and Fox C A 1998 Response of soil invertebrates to reduced tillage systems established on a clay loam soil. Applied Soil Ecology 9: 423-428.

    Article  Google Scholar 

  • Neher D A 1999 Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agroforestry Systems 45: 159-185.

    Article  Google Scholar 

  • Osler G H R and Beattie A J 2001 Contribution of oribatid and mesostigmatid soil mites in ecologically based estimates of global species richness. Austral Ecology 26: 70-79.

    Article  Google Scholar 

  • Osler G H R, Westhorpe D and Oliver I 2001 The short-term effects of endosulfan discharges on eucalypt floodplain soil microarthropods. Applied Soil Ecology 16: 263-273.

    Article  Google Scholar 

  • Osler G H R., van Vliet P C J, Gauci C S and Abbott L K 2000 Changes in free living soil nematode and micro-arthropod communities under a canola-wheat-lupin rotation in Western Australia. Australian Journal of Soil Research 38: 47-59.

    Article  Google Scholar 

  • Parmelee R W and Alston D G 1986 Nematode trophic structure in conventional and notillage agroecosystems. Journal of Nematology 18: 403-407.

    Google Scholar 

  • Perdue J C and Crossley D A 1989 Seasonal abundance of soil mites (Acari) in experimental agroecosystems: effect of drought in no-tillage and conventional tillage. Soil and Tillage Research 15: 117-124.

    Article  Google Scholar 

  • Pimm S L 1991 The balance of nature? Ecological issues in the conservation of species and communities. University of Chicago Press. Chicago.

    Google Scholar 

  • Recous S, Aita C and Mary B 1999 In situ changes in gross N transformations in bare soil after addition of straw. Soil Biology and Biochemistry 31: 119-133.

    Article  CAS  Google Scholar 

  • Santos P F and Whitford W G 1981 The effects of microarthropods on litter decomposition in a Chihauhuan desert ecosystem. Ecology 62: 654-663.

    Article  Google Scholar 

  • Schulz E and Scheu S 1994 Oribatid mite mediated changes in litter decomposition: model experiments with 14C-labelled holocellulose. Pedobiologia 38: 344-352.

    CAS  Google Scholar 

  • Seastedt T R 1984 The role of microarthropods in decomposition and mineralisation processes. Annual Review of Entomology 29: 25-46.

    Article  Google Scholar 

  • Setälä H, Tyynismaa M, Martikainen E and Huhta V 1991 Mineralisation of C, N and P in relation to decomposer community structure in coniferous forest soil. Pedobiologia 35: 285-296.

    Google Scholar 

  • Siepel H and van de Bund C F 1988 The influence of management practises on the microarthropod community of grassland. Pedobiologia 31: 339-354.

    Google Scholar 

  • Subler S, Baranski C M and Edwards C A 1997 Earthworm additions increased shortterm nitrogen availability and leaching in two grain-crop agroecosystems. Soil Biology and Biochemistry 29: 413-421.

    Article  CAS  Google Scholar 

  • Sulkava P, Huhta V and Laakso J 1996 Impact of soil fauna structure on decomposition and N-mineralisation in relation to temperature and moisture in forest soil. Pedobiologia 40: 505-513.

    Google Scholar 

  • Swift M J, Andrén O, Brussaard L, Briones M, Coûteaux M M, Ekschmitt K, Kjoller A, Loiseau P and Smith P 1998 Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Global Change Biology 4: 729-743.

    Article  Google Scholar 

  • Swift M J, Heal O W and Anderson J M 1979 Decomposition in terrestrial ecosystems. Blackwell Scientific. Oxford, UK.

    Google Scholar 

  • Takeda H 1995 A 5 year study of litter decomposition processes in a Chamaecyparis obtusa Endl. forest. Ecological Research 10: 95-104.

    Article  Google Scholar 

  • Teuben A and Roelofsma T A P J 1990 Dynamic interactions between functional groups of soil arthropods and microorganisms during decomposition of coniferous litter in microcosm experiments. Biology and Fertility of Soils 9: 145-151.

    Article  CAS  Google Scholar 

  • Tian G, Brussaard L, Kang B T and Swift M J 1997 Soil fauna-mediated decomposition of plant residues under constrained environmental and residue quality conditions. In: Driven by Nature: Plant Litter Quality and Decomposition. G Cadisch and G E Giller (eds.) pp. 125-134. CAB International. Wallingford, Oxon, UK.

    Google Scholar 

  • Tian G, Brussaard L and Kang B T 1995 Breakdown of plant residues with contrasting chemical compositions under humid tropical conditions: effects of earthworms and millipedes. Soil Biology and Biochemistry 27: 277-280.

    Article  CAS  Google Scholar 

  • Tian G, Brussaard L and Kang B T 1993 Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effects on soil fauna. Soil Biology and Biochemistry 25: 731-737.

    Article  Google Scholar 

  • Villenave C, Bongers T, Ekschmitt K, Djibal D and Chotte J L 2001 Changes in nematode communities following cultivation of soils after fallow periods of different length. Applied Soil Ecology 17: 43-52.

    Article  Google Scholar 

  • Vossbrinck C R, Coleman D C and Wooley T A 1979 Abiotic and biotic factors in litter decomposition in a semiarid grassland. Ecology 60: 265-271.

    Article  CAS  Google Scholar 

  • Vreeken-Buijs M J and Brussaard L 1996 Soil mesofauna dynamics, wheat residue decomposition and nitrogen mineralisation in buried litter bags. Biology and Fertility of Soils 23: 374-381.

    CAS  Google Scholar 

  • Wardle D A 1995 Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Advances in Ecological Research 26: 105-185.

    Article  Google Scholar 

  • Wardle D A, Nicholson K S, Bonner K I and Yeates G W 1999 Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biology and Biochemistry 31: 1691-1706.

    Article  CAS  Google Scholar 

  • Webb N R 1994 Post-fire succession of cryptostigmatic mites (Acari, Cryptostigmata) in Calluna-heathland soil. Pedobiologia 38: 138-145.

    Google Scholar 

  • Whitford W G 1996 The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity and Conservation 5: 185-195.

    Article  Google Scholar 

  • Whitford W G, Freckman D W, Elkins N Z, Parker L W, Parmelee R, Phillips J and Tucker S 1981 Diurnal migration and responses to simulated rainfall in desert soil microarthropods and nematodes. Soil Biology and Biochemistry 13: 417-425.

    Article  Google Scholar 

  • Yeates G W, Wardle D A and Watson R N 1999 Responses of soil nematode populations, community structure, diversity and temporal variability to agricultural intensification over a seven-year period. Soil Biology and Biochemistry 31: 1721-1733.

    Article  CAS  Google Scholar 

  • Yeates G W, Bardgett R D, Cook R, Hobbs P J, Bowling P J and Potter J F 1997 Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. Journal of Applied Ecology 34: 453-470.

    Article  Google Scholar 

  • Yeates G W and Bird F 1994 Some observations on the influence of agricultural practices on the nematode faunae of some South Australian soils. Fundamental and Applied Nematology 17: 133-145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Osler, G.H. (2007). Impact of Fauna on Chemical Transformations in Soil. In: Abbott, L.K., Murphy, D.V. (eds) Soil Biological Fertility. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6619-1_2

Download citation

Publish with us

Policies and ethics