Dispersion and Localisation in a Strain–Softening Two–Phase Medium

  • René de Borst
  • Marie-Angèle Abellan
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 7)


In fluid–saturated media wave propagation is dispersive, but the associated internal length scale vanishes in the short wave-length limit. Accordingly, upon the introduction of softening, localisation in a zero width will occur and no regularisation is present. This observation is corroborated by numerical analyses of wave propagation in a finite one-dimensional bar.


Momentum Balance Strain Softening Length Limit Reference Calculation Phase Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mühlhaus HB, Vardoulakis I (1987) The thickness of shear bands in granular materials. Géotechnique 37:271–283CrossRefGoogle Scholar
  2. 2.
    de Borst R, Sluys LJ (1991) Localisation in a Cosserat continuum under static and dynamic loading conditions. Comp Meth Appl Mech Eng 90:805–827CrossRefGoogle Scholar
  3. 3.
    Needleman A (1987) Material rate dependence and mesh sensitivity in localization problems. Comp Meth Appl Mech Eng 67:68–85Google Scholar
  4. 4.
    Sluys LJ, de Borst R (1992) Wave propagation and localisation in a rate-dependent cracked medium — Model formulation and one-dimensional examples. Int J Solids Struct 29:2945–2958CrossRefGoogle Scholar
  5. 5.
    Aifantis EC (1984) On the microstructural origin of certain inelastic models. ASME J Eng Mater Technol 106:326–330CrossRefGoogle Scholar
  6. 6.
    Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal damage theory. ASCE J Eng Mech 113:1512–1533CrossRefGoogle Scholar
  7. 7.
    de Borst R, Mühlhaus HB (1992) Gradient-dependent plasticity: Formulation and algorithmic aspects. Int J Num Meth Eng 35:521–539MATHCrossRefGoogle Scholar
  8. 8.
    Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage modelling for quasi–brittle materials. Int J Num Meth Eng 39:3391–3403MATHCrossRefGoogle Scholar
  9. 9.
    Ehlers W, Volk W (1997) On shear band localization phenomena in liquid– saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mech Coh-frict Mat 2:301–330CrossRefGoogle Scholar
  10. 10.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc America 28:168–178CrossRefMathSciNetGoogle Scholar
  11. 11.
    Rizzi E, Loret B (1999) Strain localization in fluid–saturated anisotropic elastic– plastic porous media. Int J Eng Sci f37:235–251CrossRefMathSciNetGoogle Scholar
  12. 12.
    Simoes FMF, Martins JAC, Loret B (1999) Instabilities in elastic-plastic saturated porous media: harmonic wave versus acceleration wave analysis. Int J Solids Struct 36:1277–1295MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Zhang HW, Sanavia L, Schrefler BA (1999) An internal length scale in dynamic strain localization of multiphase porous media. Mech Coh-frict Mat 4:445–460Google Scholar
  14. 14.
    Zhang HW, Schrefler BA (2004) Particular aspects of internal length scales in strain localisation analysis of multiphase porous materials. Comp Meth Appl Mech Eng 193:2867–2884MATHCrossRefGoogle Scholar
  15. 15.
    Benallal A, Comi C (2002) Material instabilities in inelastic saturated porous media under dynamic loadings. Int J Sol Struct 39:3693–3716MATHCrossRefGoogle Scholar
  16. 16.
    Benallal A, Comi C (2003) On numerical analyses in the presence of unstable saturated porous materials. Int J Num Meth Eng 56:883–910MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Abellan MA, de Borst R (2006) Wave propagation and localisation in a softening two–phase medium. Comp Meth Appl Mech Eng, doi: 10.1016/j.cma.2005.05.056Google Scholar
  18. 18.
    Jouanna P, Abellan MA (1995) Generalized approach to heterogeneous media. In: Gens A, Jouanna P, Schrefler B (eds) Modern Issues in Non-Saturated Soils, 1–128. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. 19.
    Lewis RW, Schrefler BA (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Second Edition. John Wiley & Sons, ChichesterMATHGoogle Scholar
  20. 20.
    Whitham GB (1974) Linear and Nonlinear Waves. Wiley-Interscience, New YorkMATHGoogle Scholar
  21. 21.
    Sluys LJ, de Borst R, Mühlhaus HB (1993) Wave propagation and dispersion in a gradient-dependent medium. Int J Solids Struct 30:1153–1171MATHCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.LaMCoSINSA de LyonVilleurbanneFrance
  3. 3.LTDS-ENISE, ENISESaint-EtienneFrance

Personalised recommendations