Interspecific Competition in a Pecan-cotton Alley-cropping System in the Southern United States: Is Light the Limiting Factor?

  • D. S. Zamora
  • S. Jose
  • P. K. R. Nair
  • J. W. Jones
  • B. J. Brecke
  • C. L. Ramsey
Part of the Advances in Agroforestry book series (ADAG, volume 4)

The manner in which light is intercepted by crop canopies and converted to structural dry matter can significantly affect primary production at a given site. A number of authors have investigated plant performance under different environmental conditions, including different levels of light, in alley cropping and similar agroforestry systems (Azam-ali et al. 1990; Monteith et al. 1991; Rosenthal and Gerik, 1991; Heitholt et al. 1992; Chirko et al. 1996; Gillespie et al. 2000; Jose et al. 2000). These studies have revealed strong linear relationships between photosynthetically active radiation (PAR, 400–700 nm) and dry matter production.


Photosynthetically Active Radiation Aboveground Biomass Leaf Area Index Agroforestry System Interspecific Competition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen S.C. (2003) Nitrogen dynamics in a pecan (Carya illinoensis K. Koch)-cotton (Gossyium hirsutum L.) alley cropping system in the Southern United States. PhD dissertation. University of Florida, Florida.Google Scholar
  2. Azam-ali S.N., Matthews R.B, Williams J.H., and Peacock J.M. (1990) Light use, water uptake and performance of individual components of a sorghum/groundnut intercrop. Expl. Agric. 26:413–427.CrossRefGoogle Scholar
  3. Bange M.P. and Milroy S.P. (1998) Growth analysis of short and long season cotton cultivars. Proceedings of the 9th Australian Agronomy Conference, Wagga wagga, Australia.Google Scholar
  4. Beer J., Muschler R., Kass D., and Somarriba E. (1998) Shade management in coffee and cacao plantations. Agroforest. Syst. 38:139–164.CrossRefGoogle Scholar
  5. Bellow J.G. and Nair P.K.R. (2003) Comparing common methods for assessing understory light availability in shaded-perennial agroforestry system. Agric. For. Meteorol. 114:197–211.CrossRefGoogle Scholar
  6. Bennett J.M., Sinclair T.R., Ma L., and Boote K.J. (1993) Single leaf carbon exchange and canopy radiation use efficiency of four peanut cultivars. Peanut Sci. 20:1–5.CrossRefGoogle Scholar
  7. Chirko C.P., Gold M.A., Nguyen P.V., and Jiang J.P. (1996) Influence of direction and distance from trees on wheat yield and photosynthetic photon flux density (QP) in a Paulownia wheat intercropping system. For. Ecol. Manage. 83:171–180.CrossRefGoogle Scholar
  8. Corlette J., Black C.R., Ong C.K. and Monteith J.L. 1992. Aboveground and belowground interactions in a leucaena/millet alley cropping system. II. Light interception and dry matter production. Agric. For. Metreol. 60:73–91.CrossRefGoogle Scholar
  9. Gillespie A.R., Jose S., Mengel D.B., Hoover W.L., Pope P.E., Seifert J.R., Biehle D.J., Stall T., and Benjamin T.J. (2000) Defining competition vectors in a temperate alley cropping system in the Midwestern USA 1. Production Physiology. Agroforest. Syst. 48:25–40.CrossRefGoogle Scholar
  10. Gordon A.M., Newman S.M., and Williams P.A. (1997) Temperate agroforestry system: an overview. In: Huxley P. and Ong C.K. (eds) Temperate Agroforestry System, CAB International, Wallingford, UK, pp. 1–6.Google Scholar
  11. Heitholt J.J., Pettigrew W.T., and Meredith Jr. W.R. (1992) Light interception and lint yield of narrow-row cotton. Crop Sci. 32:728–733.CrossRefGoogle Scholar
  12. Jose S., Gillespie A.R., and Pallardy S.G. (2004) Interspecific interactions in temperate agroforestry. Agroforest. Syst. 61:237–255.CrossRefGoogle Scholar
  13. Jose S., Gillespie A.R., Seifer J.R., and Biehle D.J. (2000) Defining competition vectors in a temperate alley cropping system in the Midwestern USA 2. Competition for water. Agroforest. Syst. 48:41–59.CrossRefGoogle Scholar
  14. Jose S., Merritt S., and Ramsey C.L. (2002) Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen. For. Ecol. Manage. 2003:335–344.Google Scholar
  15. Karim A.B., Savill P.S., and E.R. Rhoades. (1993) The effects of between-row (alley width) and with-in row spacing of Gliricidia sepium on alley cropped maize in Sierra Leone: growth and yield of maize. Agroforest. Syst. 24:81–93.CrossRefGoogle Scholar
  16. Kiniry J.R., Jones C.A., O’Toole J.C., Blanchet R., Caberguene M., and Spanel D.A. (1989) Radiation use efficiency in biomass accumulation prior to grain filling for five grain-crops species. Field Crop Res. 20:51–64.CrossRefGoogle Scholar
  17. Kozlowski T.T. and Pallardy S.G. (1997) Physiology of Woody Plants, 2nd edn. Academic Press, San Diego, p. 411.Google Scholar
  18. Lambers H., Chapin III F.S., and Pons T.L. (1998) Plant Physiological Ecology. Springer, New York City, p. 540.Google Scholar
  19. Lawson T.L. and Kang B.T. (1990) Yield of maize and cowpea in an alley cropping system in relation to available light. Agric. For. Meterol. 52:347–357.CrossRefGoogle Scholar
  20. Muchow R.C. and Sinclair T.R. (1993) Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum. Crop Sci. 34:721–727.Google Scholar
  21. Monteith J.L., Ong C.K., and Corlett J.E. (1991) Microclimatic interactions in agroforestry systems. For. Ecol. Manage. 45:31–44.CrossRefGoogle Scholar
  22. Nair P.K.R. 1993. An introduction to Agroforestry. Kluwer Academic, Dordrecht, The Netherlands, p. 499.Google Scholar
  23. Nissen T.M., Midmore D.J., and Cabrera M.L. (1999) Aboveground and belowground competition between intercropped cabbage and young. Eucalyptus torelliana. Agroforest. Sys. 46:83–93.Google Scholar
  24. Rosenthal W.D. and Gerik T.J. (1991) Radiation use efficiency among cotton cultivars. Agron. J. 83:655–658.Google Scholar
  25. Sinclair T.R. and Horie T. (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci. 29:90–98.CrossRefGoogle Scholar
  26. Smith T. and Huston M. (1989) A theory of the spatial and temporal dynamics of plant-communities. Vegetatio. 83:49–69.CrossRefGoogle Scholar
  27. Wanvestraut R.H., Jose S., Nair P.K.R., and Brecke J.B. (2004) Competition for water in a pecan (Carya illinoenis K. Koch)–cotton (Gossypiumhirsutum L) alleycropping system in southern United States. Agroforest. syst. 60:167–179.CrossRefGoogle Scholar
  28. Zamora D.S., Jose S., Nair P.K.R., and Ramsey C.L. (2006) Interspecific competition in a pecan-cotton alleycropping system in the southern United States: The production Physiology. Can. J. Bot. 84:1686–1694.CrossRefGoogle Scholar
  29. Zamora D.S., Jose. S., and Nair P.K.R. (2007) Morphological plasticity of cotton roots in response to interspecific competition with pecan in an alleycropping system in the southern United States. Agroforest. Syst. 69:107–116.CrossRefGoogle Scholar
  30. Zhao D. and Oosterhius D. (1998) Cotton responses to shade at different growth stages: nonstructural carbohydrate composition. Crop Sci. 38:1196–1203.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • D. S. Zamora
    • 1
  • S. Jose
    • 2
  • P. K. R. Nair
    • 2
  • J. W. Jones
    • 3
  • B. J. Brecke
    • 4
  • C. L. Ramsey
    • 5
  1. 1.University of Minnesota Extension
  2. 2.School of Forest Resources and ConservationUniversity of FloridaGainesville
  3. 3.Department of Biological and Agricultural EngineeringUniversity of FloridaGainesville
  4. 4.Department of AgronomyUniversity of FloridaMilton
  5. 5.USDA-APHISFort Collins

Personalised recommendations