Cancer Stem Cells and Impaired Apoptosis

  • Zainab Jagani
  • Roya Khosravi-Far
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 615)

For more than 100 years scientists have fervently sought the fundamental origins of tumorigenesis, with the ultimate hope of discovering a cure. Indeed, these efforts have led to a significant understanding that multiple genetic and molecular aberrations, such as increased proliferation and the inhibition of apoptosis, contribute to the canonical characteristics of cancer. Despite these advances in our knowledge, a more thorough understanding, such as the precise cells, which are the targets of neoplastic transformation, especially in solid tumors, is currently lacking. An emerging hypothesis in the field is that cancer arises and is sustained from a rare subpopulation of tumor cells with characteristics that are highly similar to stem cells, such as the ability to self-renew and differentiate. In addition, more recent studies indicate that stem cell self-renewal pathways that are active primarily during embryonic development and adult tissue repair may be aberrantly activated in various cancers. This chapter introduces the cancer stem cell hypothesis; explores evidence for the presence of cancer stem cells, particularly in leukemia; and discusses various classical stem cell self-renewal pathways in relation to cancer. Investigating the role of cancer stem cells in the context of the major characteristics of cancer, especially impaired apoptosis, offers great promise for the design of superior tumor-selective and apoptosis-inducing therapies.


cancer stem cell therapy leukemia Notch Hedgehog Wnt Bmi1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100, 3983–3988.CrossRefGoogle Scholar
  2. Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I., and Clarke, M. F. (2004). Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14, 43–47.CrossRefGoogle Scholar
  3. Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770–776.CrossRefGoogle Scholar
  4. Bailey, A. M. and Posakony, J. W. (1995). Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev 9, 2609–2622.CrossRefGoogle Scholar
  5. Bapat, S. A., Mali, A. M., Koppikar, C. B., and Kurrey, N. K. (2005). Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65, 3025–3029.Google Scholar
  6. Berman, D. M., Karhadkar, S. S., Hallahan, A. R., Pritchard, J. I., Eberhart, C. G., Watkins, D. N., Chen, J. K., Cooper, M. K., Taipale, J., Olson, J. M., and Beachy, P. A. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561.CrossRefGoogle Scholar
  7. Berman, D. M., Karhadkar, S. S., Maitra, A., Montes De Oca, R., Gerstenblith, M. R., Briggs, K., Parker, A. R., Shimada, Y., Eshleman, J. R., Watkins, D. N., and Beachy, P. A. (2003). Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851.CrossRefGoogle Scholar
  8. Bhatia, R., Holtz, M., Niu, N., Gray, R., Snyder, D. S., Sawyers, C. L., Arber, D. A., Slovak, M. L., and Forman, S. J. (2003). Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707.CrossRefGoogle Scholar
  9. Bigelow, R. L., Chari, N. S., Unden, A. B., Spurgers, K. B., Lee, S., Roop, D. R., Toftgard, R., and McDonnell, T. J. (2004). Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem 279, 1197–1205.CrossRefGoogle Scholar
  10. Bonnet, D. and Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730–737.CrossRefGoogle Scholar
  11. Brou, C., Logeat, F., Gupta, N., Bessia, C., LeBail, O., Doedens, J. R., Cumano, A., Roux, P., Black, R. A., and Israel, A. (2000). A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5, 207–216.CrossRefGoogle Scholar
  12. Buick, R. N. and Pollak, M. N. (1984). Perspectives on clonogenic tumor cells, stem cells, and oncogenes. Cancer Res 44, 4909–4918.Google Scholar
  13. Burkert, J., Wright, N., and Alison, M. (2006). Stem cells and cancer: an intimate relationship. J Pathol 209, 287–297.CrossRefGoogle Scholar
  14. Callahan, R. and Egan, S. E. (2004). Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 9, 145–163.CrossRefGoogle Scholar
  15. Callahan, R. and Raafat, A. (2001). Notch signaling in mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia 6, 23–36.CrossRefGoogle Scholar
  16. Chen, Y., Fischer, W. H., and Gill, G. N. (1997). Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem 272, 14110–14114.CrossRefGoogle Scholar
  17. Chuang, P. T. and McMahon, A. P. (1999). Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617–621.CrossRefGoogle Scholar
  18. Cohen, M. M., Jr. (2003). The hedgehog signaling network. Am J Med Genet A 123, 5–28.CrossRefGoogle Scholar
  19. Curry, C. L., Reed, L. L., Golde, T. E., Miele, L., Nickoloff, B. J., and Foreman, K. E. (2005). Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi’s sarcoma tumor cells. Oncogene 24, 6333–6344.Google Scholar
  20. Davis, R. L. and Turner, D. L. (2001). Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20, 8342–8357.CrossRefGoogle Scholar
  21. De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., Schroeter, E. H., Schrijvers, V., Wolfe, M. S., Ray, W. J., et al. (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522.CrossRefGoogle Scholar
  22. Dick, J. E. (2005). Acute myeloid leukemia stem cells. Ann NY Acad Sci 1044, 1–5.CrossRefGoogle Scholar
  23. Ellisen, L. W., Bird, J., West, D. C., Soreng, A. L., Reynolds, T. C., Smith, S. D., and Sklar, J. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661.CrossRefGoogle Scholar
  24. Elrick, L. J., Jorgensen, H. G., Mountford, J. C., and Holyoake, T. L. (2005). Punish the parent not the progeny. Blood 105, 1862–1866.CrossRefGoogle Scholar
  25. Foulds, L. (1965). Multiple etiologic factors in neoplastic development. Cancer Res 25, 1339–1347.Google Scholar
  26. Fuchs, S. Y., Ougolkov, A. V., Spiegelman, V. S., and Minamoto, T. (2005). Oncogenic beta-catenin signaling networks in colorectal cancer. Cell Cycle 4, 1522–1539.Google Scholar
  27. Gailani, M. R., Stahle-Backdahl, M., Leffell, D. J., Glynn, M., Zaphiropoulos, P. G., Pressman, C., Unden, A. B., Dean, M., Brash, D. E., Bale, A. E., and Toftgard, R. (1996). The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14, 78–81.CrossRefGoogle Scholar
  28. Gallahan, D. and Callahan, R. (1997). The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 14, 1883–1890.CrossRefGoogle Scholar
  29. Gallahan, D., Kozak, C., and Callahan, R. (1987). A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J Virol 61, 218–220.Google Scholar
  30. Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A., and Scott, M. P. (1996). Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 10, 301–312.CrossRefGoogle Scholar
  31. Graham, S. M., Jorgensen, H. G., Allan, E., Pearson, C., Alcorn, M. J., Richmond, L., and Holyoake, T. L. (2002). Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325.CrossRefGoogle Scholar
  32. Gray, G. E., Mann, R. S., Mitsiadis, E., Henrique, D., Carcangiu, M. L., Banks, A., Leiman, J., Ward, D., Ish-Horowitz, D., and Artavanis-Tsakonas, S. (1999). Human ligands of the Notch receptor. Am J Pathol 154, 785–794.Google Scholar
  33. Grichnik, J. M., Burch, J. A., Schulteis, R. D., Shan, S., Liu, J., Darrow, T. L., Vervaert, C. E., and Seigler, H. F. (2006). Melanoma, a tumor based on a mutant stem cell? J Invest Dermatol 126, 142–153.CrossRefGoogle Scholar
  34. Guzman, M. L., Neering, S. J., Upchurch, D., Grimes, B., Howard, D. S., Rizzieri, D. A., Luger, S. M., and Jordan, C. T. (2001). Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301–2307.CrossRefGoogle Scholar
  35. Guzman, M. L., Swiderski, C. F., Howard, D. S., Grimes, B. A., Rossi, R. M., Szilvassy, S. J., and Jordan, C. T. (2002). Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 99, 16220–16225.CrossRefGoogle Scholar
  36. Hahn, H., Wojnowski, L., Miller, G., and Zimmer, A. (1999). The patched signaling pathway in tumorigenesis and development: lessons from animal models. J Mol Med 77, 459–468.CrossRefGoogle Scholar
  37. Hansson, E. M., Lendahl, U., and Chapman, G. (2004). Notch signaling in development and disease. Semin Cancer Biol 14, 320–328.CrossRefGoogle Scholar
  38. Haupt, Y., Alexander, W. S., Barri, G., Klinken, S. P., and Adams, J. M. (1991). Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65, 753–763.CrossRefGoogle Scholar
  39. Haupt, Y., Bath, M. L., Harris, A. W., and Adams, J. M. (1993). bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8, 3161–3164.Google Scholar
  40. He, B., You, L., Uematsu, K., Xu, Z., Lee, A. Y., Matsangou, M., McCormick, F., and Jablons, D. M. (2004). A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6, 7–14.Google Scholar
  41. Heppner, G. H. (1984). Tumor heterogeneity. Cancer Res 44, 2259–2265.Google Scholar
  42. Hooper, J. E. and Scott, M. P. (2005). Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6, 306–317.CrossRefGoogle Scholar
  43. Huntly, B. J. and Gilliland, D. G. (2005). Cancer biology: summing up cancer stem cells. Nature 435, 1169–1170.CrossRefGoogle Scholar
  44. Huntly, B. J., Shigematsu, H., Deguchi, K., Lee, B. H., Mizuno, S., Duclos, N., Rowan, R., Amaral, S., Curley, D., Williams, I. R., et al. (2004). MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596.CrossRefGoogle Scholar
  45. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A., and van Lohuizen, M. (1999). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168.CrossRefGoogle Scholar
  46. Janssens, N., Janicot, M., and Perera, T. (2006). The Wnt-dependent signaling pathways as target in oncology drug discovery. Invest New Drugs 24, 263–280.CrossRefGoogle Scholar
  47. Jhappan, C., Gallahan, D., Stahle, C., Chu, E., Smith, G. H., Merlino, G., and Callahan, R. (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 6, 345–355.CrossRefGoogle Scholar
  48. Jordan, C. T. and Guzman, M. L. (2004). Mechanisms controlling pathogenesis and survival of leukemic stem cells. Oncogene 23, 7178–7187.CrossRefGoogle Scholar
  49. Kadesch, T. (2004). Notch signaling: the demise of elegant simplicity. Curr Opin Genet Dev 14, 506–512.CrossRefGoogle Scholar
  50. Kalderon, D. (2005). The mechanism of hedgehog signal transduction. Biochem Soc Trans 33, 1509–1512.CrossRefGoogle Scholar
  51. Karhadkar, S. S., Bova, G. S., Abdallah, N., Dhara, S., Gardner, D., Maitra, A., Isaacs, J. T., Berman, D. M., and Beachy, P. A. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712.CrossRefGoogle Scholar
  52. Kenney, A. M., Cole, M. D., and Rowitch, D. H. (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130, 15–28.CrossRefGoogle Scholar
  53. Kenney, A. M. and Rowitch, D. H. (2000). Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20, 9055–9067.CrossRefGoogle Scholar
  54. Kubo, M., Nakamura, M., Tasaki, A., Yamanaka, N., Nakashima, H., Nomura, M., Kuroki, S., and Katano, M. (2004). Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64, 6071–6074.CrossRefGoogle Scholar
  55. Lanz, T. A., Hosley, J. D., Adams, W. J., and Merchant, K. M. (2004). Studies of Abeta pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the gamma-secretase inhibitor N2-[(2S)-2-(3, 5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo -6, 7-dihydro-5H-dibenzo[b, d]azepin-7-yl]-L-alaninamide (LY-411575). J Pharmacol Exp Ther 309, 49–55.CrossRefGoogle Scholar
  56. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A., and Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648.CrossRefGoogle Scholar
  57. Lee, J., Platt, K. A., Censullo, P., and Ruiz i Altaba, A. (1997). Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537–2552.Google Scholar
  58. Leong, K. G. and Karsan, A. (2006). Recent insights into the role of Notch signaling in tumorigenesis. Blood 107, 2223–2233.CrossRefGoogle Scholar
  59. Lepourcelet, M., Chen, Y. N., France, D. S., Wang, H., Crews, P., Petersen, F., Bruseo, C., Wood, A. W., and Shivdasani, R. A. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5, 91–102.CrossRefGoogle Scholar
  60. Lessard, J. and Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260.CrossRefGoogle Scholar
  61. Lum, L. and Beachy, P. A. (2004). The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759.CrossRefGoogle Scholar
  62. Mackillop, W. J., Ciampi, A., Till, J. E., and Buick, R. N. (1983). A stem cell model of human tumor growth: implications for tumor cell clonogenic assays. J Natl Cancer Inst 70, 9–16.Google Scholar
  63. Mumm, J. S., Schroeter, E. H., Saxena, M. T., Griesemer, A., Tian, X., Pan, D. J., Ray, W. J., and Kopan, R. (2000). A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 5, 197–206.CrossRefGoogle Scholar
  64. Nickoloff, B. J., Hendrix, M. J., Pollock, P. M., Trent, J. M., Miele, L., and Qin, J. Z. (2005). Notch and NOXA-related pathways in melanoma cells. J Investig Dermatol Symp Proc 10, 95–104.CrossRefGoogle Scholar
  65. Nusslein-Volhard, C., and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.CrossRefGoogle Scholar
  66. Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., Morrison, S. J., and Clarke, M. F. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305.CrossRefGoogle Scholar
  67. Pasca di Magliano, M., and Hebrok, M. (2003). Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3, 903–911.CrossRefGoogle Scholar
  68. Pear, W. S., Aster, J. C., Scott, M. L., Hasserjian, R. P., Soffer, B., Sklar, J., and Baltimore, D. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183, 2283–2291.CrossRefGoogle Scholar
  69. Radtke, F. and Raj, K. (2003). The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3, 756–767.CrossRefGoogle Scholar
  70. Reedijk, M., Odorcic, S., Chang, L., Zhang, H., Miller, N., McCready, D. R., Lockwood, G., and Egan, S. E. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65, 8530–8537.CrossRefGoogle Scholar
  71. Regl, G., Kasper, M., Schnidar, H., Eichberger, T., Neill, G. W., Philpott, M. P., Esterbauer, H., Hauser-Kronberger, C., Frischauf, A. M., and Aberger, F. (2004). Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64, 7724–7731.CrossRefGoogle Scholar
  72. Reguart, N., He, B., Taron, M., You, L., Jablons, D. M., and Rosell, R. (2005). The role of Wnt signaling in cancer and stem cells. Fut Oncol 1, 787–797.CrossRefGoogle Scholar
  73. Reya, T. and Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature 434, 843–850.CrossRefGoogle Scholar
  74. Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105–111.CrossRefGoogle Scholar
  75. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., and Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657.CrossRefGoogle Scholar
  76. Ronchini, C. and Capobianco, A. J. (2001). Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 21, 5925–5934.CrossRefGoogle Scholar
  77. Sade, H., Krishna, S., and Sarin, A. (2004). The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J Biol Chem 279, 2937–2944.CrossRefGoogle Scholar
  78. Saxena, M. T., Schroeter, E. H., Mumm, J. S., and Kopan, R. (2001). Murine notch homologs (N1–4) undergo presenilin-dependent proteolysis. J Biol Chem 276, 40268–40273.Google Scholar
  79. Sheng, T., Li, C., Zhang, X., Chi, S., He, N., Chen, K., McCormick, F., Gatalica, Z., and Xie, J. (2004). Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 3, 29.CrossRefGoogle Scholar
  80. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., and Dirks, P. B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res 63, 5821–5828.Google Scholar
  81. Smith, G. H., Gallahan, D., Diella, F., Jhappan, C., Merlino, G., and Callahan, R. (1995). Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell Growth Differ 6, 563–577.Google Scholar
  82. Taipale, J. and Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354.CrossRefGoogle Scholar
  83. Taipale, J., Chen, J. K., Cooper, M. K., Wang, B., Mann, R. K., Milenkovic, L., Scott, M. P., and Beachy, P. A. (2000). Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009.CrossRefGoogle Scholar
  84. Thayer, S. P., di Magliano, M. P., Heiser, P. W., Nielsen, C. M., Roberts, D. J., Lauwers, G. Y., Qi, Y. P., Gysin, S., Fernandez-del Castillo, C., Yajnik, V., et al. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856.CrossRefGoogle Scholar
  85. van Lohuizen, M., Verbeek, S., Scheijen, B., Wientjens, E., van der Gulden, H., and Berns, A. (1991). Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65, 737–752.CrossRefGoogle Scholar
  86. Warner, J. K., Wang, J. C., Hope, K. J., Jin, L., and Dick, J. E. (2004). Concepts of human leukemic development. Oncogene 23, 7164–7177.CrossRefGoogle Scholar
  87. Watkins, D. N., Berman, D. M., Burkholder, S. G., Wang, B., Beachy, P. A., and Baylin, S. B. (2003). Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422, 313–317.CrossRefGoogle Scholar
  88. Wong, G. T., Manfra, D., Poulet, F. M., Zhang, Q., Josien, H., Bara, T., Engstrom, L., Pinzon-Ortiz, M., Fine, J. S., Lee, H. J., et al. (2004). Chronic treatment with the gamma-secretase inhibitor LY-411, 575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 279, 12876–12882.CrossRefGoogle Scholar
  89. Xie, J., Murone, M., Luoh, S. M., Ryan, A., Gu, Q., Zhang, C., Bonifas, J. M., Lam, C. W., Hynes, M., Goddard, A., et al. (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92.CrossRefGoogle Scholar
  90. Xin, L., Lawson, D. A., and Witte, O. N. (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102, 6942–6947.CrossRefGoogle Scholar
  91. Xu, Q., Simpson, S. E., Scialla, T. J., Bagg, A., and Carroll, M. (2003). Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102, 972–980.CrossRefGoogle Scholar
  92. You, L., He, B., Uematsu, K., Xu, Z., Mazieres, J., Lee, A., McCormick, F., and Jablons, D. M. (2004a). Inhibition of Wnt-1 signaling induces apoptosis in beta-catenin-deficient mesothelioma cells. Cancer Res 64, 3474–3478.CrossRefGoogle Scholar
  93. You, L., He, B., Xu, Z., Uematsu, K., Mazieres, J., Fujii, N., Mikami, I., Reguart, N., McIntosh, J. K., Kashani-Sabet, M., et al. (2004b). An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 64, 5385–5389.CrossRefGoogle Scholar
  94. You, L., He, B., Xu, Z., Uematsu, K., Mazieres, J., Mikami, I., Reguart, N., Moody, T. W., Kitajewski, J., McCormick, F., and Jablons, D. M. (2004c). Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 23, 6170–6174.CrossRefGoogle Scholar
  95. Zagouras, P., Stifani, S., Blaumueller, C. M., Carcangiu, M. L., and Artavanis-Tsakonas, S. (1995). Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA 92, 6414–6418.CrossRefGoogle Scholar
  96. Zhang, Y. and Kalderon, D. (2001). Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410, 599–604.CrossRefGoogle Scholar
  97. Zhao, S., Konopleva, M., Cabreira-Hansen, M., Xie, Z., Hu, W., Milella, M., Estrov, Z., Mills, G. B., and Andreeff, M. (2004). Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 18, 267–275.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Zainab Jagani
    • 1
  • Roya Khosravi-Far
    1. 1.Novartis Institutes for Biomedical ResearchNovartis OncologyCambridge

    Personalised recommendations