Evolving Material Discontinuities: Numerical Modeling by the Continuum Strong Discontinuity Approach (CSDA)

  • J. Oliver
  • A. E. Huespe
  • S. Blanco
  • D. L. Linero
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 5)

Summary

The CSDA, as a numerical tool for modeling evolving displacement discontinuities in material failure problems, is addressed. Its specific features are: a) the explicit use of a (regularized) strong discontinuity kinematics, b) the introduction of the material failure constitutive model in a continuum (stress-strain) format, and c) the determination of the onset and propagation of the discontinuity by means of constitutive model material bifurcation analysis. Numerical applications to concrete failure and soil collapse problems are presented.

Keywords

Continuum Strong Discontinuity Approach material failure simulation IMPL-EX algorithm. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfaiate J., Sluys L.J. (2004). Discontinuous numerical modelling of concrete cracking, EUROMECH Colloquium 460 Numerical Modelling of Concrete Cracking, Innsbruck, Austria.Google Scholar
  2. 2.
    Armero F., Garikipati K. (1996). An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int. J. Solids & Structures, vol. 33, pp. 2863–2885.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barragan B.E. (2002). Failure and toughness of steel fiber reinforced concrete under tension and shear, PhD. Thesis, UPC, Barcelona, Spain.Google Scholar
  4. 4.
    Belytschko T., Moûs N., Usui S., Parimi C. (2001). Arbitrary discontinuities in finite elements. Int. J. for Num. Meth. Eng., vol. 50, pp. 993–1013.MATHCrossRefGoogle Scholar
  5. 5.
    Borja R.I. (2000). A finite element model for strain localization analysis of strongly discontinuous fields based ond standard Galerkin approximation. Comp. Meth. Appl. Mech. and Eng., vol. 190, pp. 1529–1549.MATHCrossRefGoogle Scholar
  6. 6.
    Feist C., Hofstetter G. (2006). An embedded strong discontinuity model for cracking of plain concrete, Comp. Meth. Appl. Mech. and Eng., vol. 195, pp. 7115–7138.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gravouil A., Moûs N., Belytschko T. (2002). Non-planar 3D crack growth by the extended finite element and level sets — Part II: Level set update. Int. J. for Num. Meth. in Eng., vol. 53, pp. 2569–2586.CrossRefGoogle Scholar
  8. 8.
    Papoulia K.D., Sam C.H., Vavasis S.A. (2003). Time continuity in cohesive finite element modeling. Int. J. for Num. Meth. Eng., vol. 58, pp. 679–701.MATHCrossRefGoogle Scholar
  9. 9.
    Planas J., Elices M., Guinea G.V., Gómez F.J., Cendon D.A., Arbilla I. (2003). Generalizations and specializations of cohesive crack models. Engineering Fracture Mechanics, vol. 70, pp. 1759–1776.Google Scholar
  10. 10.
    Oliver J. (2000) On the discrete constituve models induced by strong discontinuity kinematics and continuum constitutive equations. Int. J. Solids & Structures, vol. 37, pp. 7207–7229.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Oliver J., Huespe A.E. (2004). Continuum approach to material failure in strong discontinuity settings. Comp. Meth. Appl. Mech. Eng., vol. 193, pp. 3195–3220.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Oliver J., Huespe A.E. (2004). Theoretical and computational issues in modelling material failure in strong discontinuity scenarios. Comp. Meth. Appl. Mech. Eng., vol. 193, pp. 2987–3014.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Oliver J., Huespe A.E., Samaniego E., Chaves EWV (2004). Continuum approach to the numerical simulation of material failure in concrete. Int. J. Num. Anal. Meth. Geomech., vol. 28, pp. 609–632.MATHCrossRefGoogle Scholar
  14. 14.
    Oliver J., Huespe A.E., Sánchez P.J.(2006). A comparative study on finite elements for capturing strong discontinuities: EFEM vs XFEM. Comput. Meth. Appl. Mech. Eng., vol. 195, pp. 4732–4752.MATHCrossRefGoogle Scholar
  15. 15.
    Oliver J., Huespe A.E., Blanco S., Linero D.L. (2006). Stability and robustness issues in numerical modeling of material failure in the strong discontinuity approach. Comput. Meth. Appl. Mech. Eng., vol. 195, pp. 7093–7114.MATHCrossRefGoogle Scholar
  16. 16.
    Ortiz M., Pandolfi A. (1999). Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. for Num. Meth. Eng., vol. 44, pp. 1267–1282.MATHCrossRefGoogle Scholar
  17. 17.
    Sancho J.M., Planas J., Cendón D.A., Reyes E., Gálvez J.C. (2007). An embedded crack model for finite element analysis of concrete — fracture. Eng. Fract. Mech., vol. 74, pp. 75–86.CrossRefGoogle Scholar
  18. 18.
    Simo J.C., Oliver J., Armero F. (1993). An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput. Mech., vol. 12, pp. 277–296.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Simo J.C., Oliver J. (1994). A new approach to the analysis and simulation of strain softening in solids. Proc. US-European Workshop on Fracture and Damage in Quasibrittle Structures, Z.P. Bazant, Z. Bittnar, M. Jirasek, M. Mazars (Eds.), Prague, Czech Republic.Google Scholar
  20. 20.
    Xu X.P., Needleman A. (1994). Numerical simulation of fast crack growth in brittle solids, J. Mech. Phys. Solids, vol. 42, pp. 1397–1434.MATHCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • J. Oliver
    • 1
  • A. E. Huespe
    • 2
  • S. Blanco
    • 1
  • D. L. Linero
    • 3
  1. 1.E.T.S. Enginyers de Camins, Canals i Ports, Technical University of Catalonia (UPC). Campus Nord, U.P.CBarcelonaSpain
  2. 2.CIMEC, Intec/ConicetSanta FeArgentina
  3. 3.Universidad Nacional de ColombiaBogotáColombia

Personalised recommendations