A discrete model for the propagation of discontinuities in a fluid-saturated medium

  • Julien Réthore
  • Rene de Borst
  • Marie-Angèle Abellan
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 5)

Summary

The first part of this manuscript discusses a finite element method that captures arbitrary discontinuities in a two-phase medium by exploiting the partition-of-unity property of finite element shape functions. The fluid flow away from the discontinuity is modelled in a standard fashion using Darcy's relation, and at the discontinuity a discrete analogy of Darcy's relation is used. Subsequently, dynamic shear banding is studied numerically for a biaxial, plane-strain specimen. A Tresca-like as well as a Coulomb criterion are used as nucleation criterion. Decohesion is controlled by a mode-II fracture energy, while for the Coulomb criterion, frictional forces are transmitted across the interface in addition to the cohesive shear tractions. The effect of the different interface relations on the onset of cavitation is studied.

Keywords

shear band dynamic fracture two-phase medium partition-of-unity method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Borst R (2004) Damage, material instabilities, and failure. In: Encyclopedia of Computational Mechanics. Wiley, ChichesterGoogle Scholar
  2. 2.
    Babuska I, Melenk JM (1997) International Journal for Numerical Methods in Engineering 40:727–758MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Belytschko T, Black T (1999) International Journal for Numerical Methods in Engineering 45:601–620MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Moës N, Dolbow J, Belytschko T (1999) International Journal for Numerical Methods in Engineering 46:131–150MATHCrossRefGoogle Scholar
  5. 5.
    Wells GN, Sluys LJ (2001) International Journal for Numerical and Analytical Methods in Geomechanics 25:691–709MATHCrossRefGoogle Scholar
  6. 6.
    Wells GN, Sluys LJ, de Borst R (2002) International Journal for Numerical Methods in Engineering 53:1235–1256CrossRefGoogle Scholar
  7. 7.
    Wells GN, de Borst R, Sluys LJ (2002) International Journal for Numerical Methods in Engineering 54:1333–1355MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Remmers JJC, de Borst R, Needleman A (2003) Computational Mechanics 31:69–77MATHCrossRefGoogle Scholar
  9. 9.
    Samaniego E, Belytschko T (2005) International Journal for Numerical Methods in Engineering 62:1857–1872MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Réthoré J, Gravouil A, Combescure A (2005) International Journal for Numerical Methods in Engineering 63:631–659MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Réthoré J, Gravouil A, Combescure A (2005) International Journal for Numerical Methods in Engineering 64:260–284MATHCrossRefGoogle Scholar
  12. 12.
    Areias PMA, Belytschko T (2006) International Journal for Numerical Methods in Engineering 66:878–910MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Terzaghi K (1943) Theoretical Soil Mechanics John Wiley&Sons, New YorkCrossRefGoogle Scholar
  14. 14.
    Biot MA (1965) Mechanics of Incremental Deformations John Wiley&Sons, ChichesterGoogle Scholar
  15. 15.
    Jouanna P, Abellan MA (1995) Generalized approach to heterogeneous media In: Modern Issues in Non-Saturated Soils. Springer-Verlag, Wien—New York, 1–128Google Scholar
  16. 16.
    Lewis RW, Schrefler BA (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Second Edition John Wiley&Sons, ChichesterMATHGoogle Scholar
  17. 17.
    de Borst R, Réthoré J, Abellan MA (2006) Archive of Applied Mechanics 75:595– 606MATHCrossRefGoogle Scholar
  18. 18.
    Armero F, Callari C (1999) International Journal for Numerical Methods in Engineering 46:1673–1698MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Larsson J, Larsson R (2000) Mechanics of Cohesive-frictional Materials 5:565– 582CrossRefGoogle Scholar
  20. 20.
    Schrefler, B, Scotta R (2001) Computer Methods in Applied Mechanics and Engineering 190:3223–3246MATHCrossRefGoogle Scholar
  21. 21.
    Feenstra PH, de Borst R (1996) International Journal of Solids and Structures 33:707–730MATHCrossRefGoogle Scholar
  22. 22.
    Abellan MA, de Borst R (2006) Computer Methods in Applied Mechanics and Engineering 195:5011–5019MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Jirasek M (1998) Embedded crack models for concrete fracture In: Computational Modelling of Concrete Structures. Balkema, Rotterdam, 291–300Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Julien Réthore
    • 1
  • Rene de Borst
    • 1
    • 2
  • Marie-Angèle Abellan
    • 3
  1. 1.Faculty of Aerospace Engineering, Delft University of TechnologyDelftNetherlands
  2. 2.LaMCoS—UMR CNRS 5514, INSA de LyonVilleurbanneFrance
  3. 3.LTDS-ENISE—UMR CNRS 5513Saint-EtienneFrance

Personalised recommendations