Myosins pp 289-323 | Cite as

Myosin V

  • James R. Sellers
  • Lois S. Weisman
Part of the Proteins and Cell Regulation book series (PROR, volume 7)


Myosin V is a two-headed cargo-transporting myosin that is found in most animal genomes. Next to the conventional class II myosins, it is probably the most studied myosin class and is, perhaps, the best characterized in terms of its molecular basis for action. This is directly related to its molecular properties. As a cargo-carrying protein, it has adapted its kinetics to become a processive motor, which spends the majority of its kinetic cycle attached strongly to actin. This feature facilitates single-molecule experiments which have revealed tremendous insights into how this myosin functions. There is good general agreement that myosin V moves processively along actin via a “hand-over-hand” lever-arm mechanism taking 36-nm steps. The activity of mammalian myosin Va is regulated by intramolecular folding in which the globular tail domains fold back and contact the motor domains to form a compact triangular shaped molecule. The function of myosin V class molecules in cells has also been well studied. Myosin V moves many types of cargo in cells, both vesicular and nonvesicular, including melanosomes, endoplasmic reticulum, secretory vesicles, vacuoles and certain mRNAs. In many cases the receptor complexes for these cargoes have also been described. This chapter will review the state of knowledge of the kinetics, mechanics, regulation and cellular function of myosin V.


intracellular motility molecular motor myosin ATPase mechano-chemical coupling cargo transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, M. Y., Krementsova, E. B., Kennedy, G. G., Mahaffy, R., Pollard, T. D., Trybus, K. M., and Warshaw, D. M. (2007). From the Cover: Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci U S A 104, 4332–4336.PubMedCrossRefGoogle Scholar
  2. Ali, M. Y., Uemura, S., Adachi, K., Itoh, H., Kinosita, K., Jr., and Ishiwata, S. (2002). Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat Struct Biol 9, 464–467.PubMedCrossRefGoogle Scholar
  3. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., and Toda, A. (2001). A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98, 12468–12472.PubMedCrossRefGoogle Scholar
  4. Au, J. S., and Huang, J. D. (2002). A tissue-specific exon of myosin Va is responsible for selective cargo binding in melanocytes. Cell Motil Cytoskeleton 53, 89–102.PubMedCrossRefGoogle Scholar
  5. Bahadoran, P., Busca, R., Chiaverini, C., Westbroek, W., Lambert, J., Bille, K., Valony, G., Fukuda, M., Naeyaert, J. M., Ortonne, J. P., and Ballotti, R. (2003). Characterization of the molecular defects in Rab27a, caused by RAB27A missense mutations found in patients with Griscelli syndrome. J Biol Chem 278, 11386–11392.PubMedCrossRefGoogle Scholar
  6. Baker, J. E., Krementsova, E. B., Kennedy, G. G., Armstrong, A., Trybus, K. M., and Warshaw, D. M. (2004). Myosin V processivity: multiple kinetic pathways for head-to-head coordination. Proc Natl Acad Sci U S A 101, 5542–5546.PubMedCrossRefGoogle Scholar
  7. Beach, D. L., Thibodeaux, J., Maddox, P., Yeh, E., and Bloom, K. (2000). The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 10, 1497–1506.PubMedCrossRefGoogle Scholar
  8. Bohl, F., Kruse, C., Frank, A., Ferring, D., and Jansen, R.P. (2000). She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J 19, 5514–5524.PubMedCrossRefGoogle Scholar
  9. Boldogh, I. R., Ramcharan, S. L., Yang, H. C., and Pon, L. A. (2004). A Type V Myosin (Myo2p) and a Rab-Like G-Protein (Ypt11p) Are Required for Retention of Newly Inherited Mitochondria in Yeast Cells during Cell Division. Mol Biol Cell. 15, 3994–4002.PubMedCrossRefGoogle Scholar
  10. Burgess, S., Walker, M., Wang, F., Sellers, J. R., White, H. D., Knight, P. J., and Trinick, J. (2002). The prepower stroke conformation of myosin V. J Cell Biol 159, 983–991.PubMedCrossRefGoogle Scholar
  11. Cao, T. T., Chang, W., Masters, S. E., and Mooseker, M. S. (2004). Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol Biol Cell 15, 151–161.PubMedCrossRefGoogle Scholar
  12. Catlett, N. L., Duex, J. E., Tang, F., and Weisman, L. S. (2000). Two distinct regions in a yeast myosin-V tail domain are required for the movement of different cargoes. J Cell Biol 150, 513–526.PubMedCrossRefGoogle Scholar
  13. Catlett, N. L., and Weisman, L. S. (1998). The terminal tail region of a yeast myosin-V mediates its attachment to vacuole membranes and sites of polarized growth. Proc Natl Acad Sci U S A 95, 14799–14804.PubMedCrossRefGoogle Scholar
  14. Cheney, R. E., O’Shea, M. K., Heuser, J. E., Coelho, M. V., Wolenski, J. S., Espreafico, E. M., Forscher, P., Larson, R. E., and Mooseker, M. S., 1993. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23.Google Scholar
  15. Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F., and Spudich, J. A. (2005). Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci U S A 102, 1419–1423.PubMedCrossRefGoogle Scholar
  16. Clemen, A. E., Vilfan, M., Jaud, J., Zhang, J., Barmann, M., and Rief, M. (2005). Force-dependent stepping kinetics of myosin-V. Biophys J 88, 4402–4410.PubMedCrossRefGoogle Scholar
  17. Coureux, P. D., Sweeney, H. L., and Houdusse, A. (2004). Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23, 4527–4537.PubMedCrossRefGoogle Scholar
  18. Coureux, P. D., Wells, A. L., Menetrey, J., Yengo, C. M., Morris, C. A., Sweeney, H. L., and Houdusse, A. (2003). A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–423.PubMedCrossRefGoogle Scholar
  19. Day, C. L., Puthalakath, H., Skea, G., Strasser, A., Barsukov, I., Lian, L. Y., Huang, D. C., and Hinds, M. G. (2004). Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands. Biochem J 377, 597–605.PubMedCrossRefGoogle Scholar
  20. De La Cruz, E. M., Sweeney, H. L., and Ostap, E. M. (2000a). ADP inhibition of myosin V ATPase activity. Biophys J 79, 1524–1529.Google Scholar
  21. De La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M., and Sweeney, H. L. (1999). The kinetic mechanism of myosin V. Proc Natl Acad Sci U S A 96, 13726–13731.Google Scholar
  22. De La Cruz, E. M., Wells, A. L., Sweeney, H. L., and Ostap, E. M. (2000b). Actin and light chain isoform dependence of myosin V kinetics. Biochemistry 39, 14196–14202.Google Scholar
  23. Dunn, A. R., and Spudich, J. A. (2007). Dynamics of the unbound head during myosin V processive translocation. Nat Struct Mol Biol 14, 246–248.PubMedCrossRefGoogle Scholar
  24. El-Husseini, A. E., and Vincent, S. R. (1999). Cloning and characterization of a novel RING finger protein that interacts with class V myosins. J Biol Chem 274, 19771–19777.Google Scholar
  25. Espindola, F. S., Espreafico, E. M., Coelho, M. V., Martins, A. R., Costa, F. R. C., Mooseker, M. S., and Larson, R. E. (1992). Biochemical and immunological characterization of p190-calmodulin complex from vertebrate brain: A novel calmodulin-binding myosin. J Cell Biol 118, 359–368.PubMedCrossRefGoogle Scholar
  26. Espindola, F. S., Suter, D. M., Partata, L. B., Cao, T., Wolenski, J. S., Cheney, R. E., King, S. M., and Mooseker, M. S. (2000). The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN. Cell Motil Cytoskeleton 47, 269–281.PubMedCrossRefGoogle Scholar
  27. Espreafico, E. M., Cheney, R. E., Matteoli, M., Nascimento, A. A. C., De Camilli, P. V., Larson, R. E., and Mooseker, M. S. (1992). Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol 119, 1541–1557.Google Scholar
  28. Espreafico, E. M., Coling, D. E., Tsakraklides, V., Krogh, K., Wolenski, J. S., Kalinec, G., and Kachar, B. (1998). Localization of myosin-V in the centrosome. Proc Natl Acad Sci U S A 95, 8636–8641.PubMedCrossRefGoogle Scholar
  29. Estrada, P., Kim, J., Coleman, J., Walker, L., Dunn, B., Takizawa, P., Novick, P., and Ferro-Novick, S. (2003). Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J Cell Biol 163, 1255–1266.Google Scholar
  30. Evans, L. L., Lee, A. J., Bridgman, P. C., and Mooseker, M. S. (1998). Vesicle-associated brain myosin-V can be activated to catalyze actin- based transport. J Cell Sci 111 (Pt 14), 2055–2066.Google Scholar
  31. Fagarasanu, A., Fagarasanu, M., Eitzen, G. A., Aitchison, J. D., and Rachubinski, R. A. (2006). The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae. Dev Cell 10, 587–600.PubMedCrossRefGoogle Scholar
  32. Forkey, J. N., Quinlan, M. E., Shaw, M. A., Corrie, J. E., and Goldman, Y. E. (2003). Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404.PubMedCrossRefGoogle Scholar
  33. Foth, B. J., Goedecke, M. C., and Soldati, D. (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103, 3681–3686.PubMedCrossRefGoogle Scholar
  34. Fry, M. R., Thomson, J. M., Tomasini, A. J., and Dunn, W. A., Jr. (2006). Early and late molecular events of glucose-induced pexophagy in Pichia pastoris require Vac8. Autophagy 2, 280–288.PubMedGoogle Scholar
  35. Fukuda, M., and Itoh, T. (2004). Slac2-a/melanophilin contains multiple PEST-like sequences that are highly sensitive to proteolysis. J Biol Chem 279, 22314–22321.PubMedCrossRefGoogle Scholar
  36. Fukuda, M., and Kuroda, T. S. (2004). Missense mutations in the globular tail of myosin-Va in dilute mice partially impair binding of Slac2-a/melanophilin. J Cell Sci 117, 583–591.PubMedCrossRefGoogle Scholar
  37. Fukuda, M., Kuroda, T. S., and Mikoshiba, K. (2002). Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: implications of a tripartite protein complex for melanosome transport. J Biol Chem 277, 12432–12436.PubMedCrossRefGoogle Scholar
  38. Gebhardt, J. C., Clemen, A. E., Jaud, J., and Rief, M. (2006). Myosin-V is a mechanical ratchet. Proc Natl Acad Sci U S A 103, 8680–8685.PubMedCrossRefGoogle Scholar
  39. Gonsalvez, G. B., Little, J. L., and Long, R. M. (2004). ASH1 mRNA anchoring requires reorganization of the Myo4p-She3p-She2p transport complex. J Biol Chem 279, 46286–46294.PubMedCrossRefGoogle Scholar
  40. Govindan, B., Bowser, R., and Novick, P. (1995). The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 128, 1055–1068.PubMedCrossRefGoogle Scholar
  41. Hales, C. M., Vaerman, J. P., and Goldenring, J. R. (2002). Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J Biol Chem 277, 50415–50421.PubMedCrossRefGoogle Scholar
  42. Hannemann, D. E., Cao, W., Olivares, A. O., Robblee, J. P., and De La Cruz, E. M. (2005). Magnesium, ADP, and actin binding linkage of myosin V: evidence for multiple myosin V-ADP and actomyosin V-ADP states. Biochemistry 44, 8826–8840.Google Scholar
  43. Hill, K. L., Catlett, N. L., and Weisman, L. S. (1996). Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisae. J Cell Biol 135, 1535–1549.PubMedCrossRefGoogle Scholar
  44. Hodi, Z., Nemeth, A. L., Radnai, L., Hetenyi, C., Schlett, K., Bodor, A., Perczel, A., and Nyitray, L. (2006). Alternatively spliced exon B of myosin Va is essential for binding the tail-associated light chain shared by dynein. Biochemistry 45, 12582–12595.PubMedCrossRefGoogle Scholar
  45. Hoepfner, D., van den, B. M., Philippsen, P., Tabak, H. F., and Hettema, E. H. (2001). A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155, 979–990.Google Scholar
  46. Holmes, K. C., and Geeves, M. A. (2000). The structural basis of muscle contraction. Philos Trans R Soc Lond B Biol Sci 355, 419–431.PubMedCrossRefGoogle Scholar
  47. Houdusse, A., Gaucher, J. F., Krementsova, E., Mui, S., Trybus, K. M., and Cohen, C. (2006). Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proc Natl Acad Sci U S A 103, 19326–19331.PubMedCrossRefGoogle Scholar
  48. Huang, J. D., Brady, S. T., Richards, B. W., Stenolen, D., Resau, J. H., Copeland, N. G., and Jenkins, N. A. (1999). Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270.PubMedCrossRefGoogle Scholar
  49. Huang, J. D., Mermall, V., Strobel, M. C., Russell, L. B., Mooseker, M. S., Copeland, N. G., and Jenkins, N. A. (1998). Molecular genetic dissection of mouse unconventional myosin-VA: Tail region mutations. Genetics 148, 1963–1972.PubMedGoogle Scholar
  50. Hume, A. N., Collinson, L. M., Hopkins, C. R., Strom, M., Barral, D. C., Bossi, G., Griffiths, G. M., and Seabra, M. C. (2002). The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic 3, 193–202.PubMedCrossRefGoogle Scholar
  51. Hume, A. N., Tarafder, A. K., Ramalho, J. S., Sviderskaya, E. V., and Seabra, M. C. (2006). A coiled-coil domain of melanophilin is essential for Myosin Va recruitment and melanosome transport in melanocytes. Mol Biol Cell 17, 4720–4735.PubMedCrossRefGoogle Scholar
  52. Ishikawa, K., Catlett, N.L., Novak, J.L., Tang, F., Nau, J.J., and Weisman, L.S. (2003). Identification of an organelle-specific myosin V receptor. J Cell Biol 160, 887–897.PubMedCrossRefGoogle Scholar
  53. Itoh, T., Toh, E., and Matsui, Y. (2004). Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast. EMBO J 23, 2520–2530.PubMedCrossRefGoogle Scholar
  54. Itoh, T., Watabe, A., Toh, E., and Matsui, Y. (2002). Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol Cell Biol 22, 7744–7757.PubMedCrossRefGoogle Scholar
  55. Ivarsson, R., Jing, X., Waselle, L., Regazzi, R., and Renstrom, E. (2005). Myosin 5a controls insulin granule recruitment during late-phase secretion. Traffic 6, 1027–1035.PubMedCrossRefGoogle Scholar
  56. Johnston, G. C., Prendergast, J. A., and Singer, R. A. (1991). The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J Cell Biol 113, 539–552.PubMedCrossRefGoogle Scholar
  57. Karcher, R. L., Roland, J. T., Zappacosta, F., Huddleston, M. J., Annan, R. S., Carr, S. A., and Gelfand, V. I. (2001). Cell cycle regulation of myosin-V by calcium/calmodulin-dependent protein kinase II. Science 293, 1317–1320.PubMedCrossRefGoogle Scholar
  58. Koide, H., Kinoshita, T., Tanaka, Y., Tanaka, S., Nagura, N., Meyer zu, H.G., Miyagi, A., and Ando, T. (2006). Identification of the single specific IQ motif of myosin V from which calmodulin dissociates in the presence of $Ca2 +$. Biochemistry 45, 11598–11604.PubMedCrossRefGoogle Scholar
  59. Krementsov, D. N., Krementsova, E. B., and Trybus, K. M. (2004). Myosin V: regulation by calcium, calmodulin, and the tail domain. J Cell Biol 164, 877–886.PubMedCrossRefGoogle Scholar
  60. Krementsova, E. B., Hodges, A. R., Lu, H., and Trybus, K. M. (2006). Processivity of chimeric class V myosins. J Biol Chem 281, 6079–6086.PubMedCrossRefGoogle Scholar
  61. Kuroda, T. S., Ariga, H., and Fukuda, M. (2003). The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes. Mol Cell Biol 23, 5245–5255.PubMedCrossRefGoogle Scholar
  62. Kuroda, T. S., Fukuda, M., Ariga, H., and Mikoshiba, K. (2002). The Slp homology domain of synaptotagmin-like proteins 1–4 and Slac2 functions as a novel Rab27A binding domain. J Biol Chem 277, 9212–9218.PubMedCrossRefGoogle Scholar
  63. Lalli, G., Gschmeissner, S., and Schiavo, G. (2003). Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J Cell Sci 116, 4639–4650.PubMedCrossRefGoogle Scholar
  64. Lapierre, L. A., and Goldenring, J. R. (2005). Interactions of myosin vb with rab11 family members and cargoes traversing the plasma membrane recycling system. Methods Enzymol 403, 715–723.PubMedGoogle Scholar
  65. Lapierre, L. A., Kumar, R., Hales, C. M., Navarre, J., Bhartur, S. G., Burnette, J. O., Provance, D. W., Jr., Mercer, J. A., Bähler, M., and Goldenring, J. R. (2001). Myosin vb is associated with plasma membrane recycling systems. Mol Biol Cell 12, 1843–1857.PubMedGoogle Scholar
  66. Larson, R. E., Espindola, F. S., and Espreafico, E. M. (1990). Calmodulin-binding proteins and calcium/calmodulin-regulated enzyme activities associated with brain actomyosin. J Neurochem 54, 1288–1294.PubMedCrossRefGoogle Scholar
  67. Legesse-Miller, A., Zhang, S., Santiago-Tirado, F. H., Van Pelt, C. K., and Bretscher, A. (2006). Regulated phosphorylation of budding yeast’s essential myosin V heavy chain, Myo2p. Mol Biol Cell 17, 1812–1821.Google Scholar
  68. Li, X. D., Ikebe, R., and Ikebe, M. (2005). Activation of myosin Va function by melanophilin, a specific docking partner of myosin Va. J Biol Chem 280, 17815–17822.PubMedCrossRefGoogle Scholar
  69. Li, X. D., Jung, H. S., Mabuchi, K., Craig, R., and Ikebe, M. (2006). The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor. J Biol Chem 281, 21789–21798.PubMedCrossRefGoogle Scholar
  70. Li, X. D., Mabuchi, K., Ikebe, R., and Ikebe, M. (2004). Ca2+-induced activation of ATPase activity of myosin Va is accompanied with a large conformational change. Biochem Biophys Res Commun 315, 538–545.PubMedCrossRefGoogle Scholar
  71. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J., and Barral, Y. (2003). Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574.PubMedCrossRefGoogle Scholar
  72. Lillie, S. H., and Brown, S. S. (1994). Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J Cell Biol 125, 825–842.PubMedCrossRefGoogle Scholar
  73. Lise, M. F., Wong, T. P., Trinh, A., Hines, R. M., Liu, L., Kang, R., Hines,D. J., Lu, J., Goldenring, J. R., Wang, Y. T., and El-Husseini, A. (2006). Involvement of myosin Vb in glutamate receptor trafficking. J Biol Chem 281, 3669–3678.PubMedCrossRefGoogle Scholar
  74. Liu, J., Taylor, D. W., Krementsova, E. B., Trybus, K. M., and Taylor, K. A. (2006). Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 442, 208–211.PubMedGoogle Scholar
  75. Long, R. M., Gu, W., Lorimer, E., Singer, R. H., and Chartrand, P. (2000). She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J 19, 6592–6601.PubMedCrossRefGoogle Scholar
  76. Lu, H., Krementsova, E. B., and Trybus, K. M. (2006). Regulation of myosin V processivity by calcium at the single molecule level. J Biol Chem 281, 31987–31994.PubMedCrossRefGoogle Scholar
  77. Matesic, L. E., Yip, R., Reuss, A. E., Swing, D. A., O’Sullivan, T. N., Fletcher, C. F., Copeland, N. G., and Jenkins, N. A. (2001). Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc Natl Acad Sci U S A 98, 10238–10243.PubMedCrossRefGoogle Scholar
  78. Mehta, A. D., Rock, R. S., Ridf, M., Spudich, J. A., Mooseker, M. S., and Cheney, R. E. (1999). Myosin-V is a processive actin-based motor. Nature 400, 590–593.PubMedCrossRefGoogle Scholar
  79. Menasche, G., Ho, C. H., Sanal, O., Feldmann, J., Tezcan, I., Ersoy, F., Houdusse, A., Fischer, A., and de Saint, B. G. (2003). Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest 112, 450–456.Google Scholar
  80. Menasche, G., Ho, C. H., Sanal, O., Feldmann, J., Tezcan, I., Ersoy, F., Houdusse, A., Fischer, A., and de Saint,Basile, G. (2000). Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 25, 173–176.Google Scholar
  81. Mercer, J. A., Seperack, P. K., Strobel, M. C., Copeland, N. G., and Jenkins, N. A. (1991). Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713.PubMedCrossRefGoogle Scholar
  82. Mermall, V., Bonafe, N., Jones, L., Sellers, J. R., Cooley, L., and Mooseker, M. S. (2005). Drosophila myosin V is required for larval development and spermatid individualization. Dev Biol.286, 238–255.PubMedCrossRefGoogle Scholar
  83. Miller, K. E., and Sheetz, M. P. (2000). Characterization of myosin V binding to brain vesicles. J Biol Chem 275, 2598–2606.PubMedCrossRefGoogle Scholar
  84. Moore, J. R., Krementsova, E. B., Trybus, K. M., and Warshaw, D. M. (2001). Myosin V exhibits a high duty cycle and large unitary displacement. J Cell Biol 155, 625–635.PubMedCrossRefGoogle Scholar
  85. Moore, J. R., Krementsova, E. B., Trybus, K. M., and Warshaw, D. M. (2004). Does the myosin V neck region act as a lever? J Muscle Res Cell Motil 25, 29–35.Google Scholar
  86. Motegi, F., Arai, R., and Mabuchi, I. (2001). Identification of two type V myosins in fission yeast, one of which functions in polarized cell growth and moves rapidly in the cell. Mol Biol Cell 12, 1367–1380.PubMedGoogle Scholar
  87. Mulvihill, D. P., Edwards, S. R., and Hyams, J. S. (2006). A critical role for the type V myosin, Myo52, in septum deposition and cell fission during cytokinesis in Schizosaccharomyces pombe. Cell Motil Cytoskeleton 63, 149–161.Google Scholar
  88. Nagashima, K., Torii, S., Yi, Z., Igarashi, M., Okamoto, K., Takeuchi, T., and Izumi, T. (2002) Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions. FEBS Lett 517, 233–238.Google Scholar
  89. Nascimento, A. A., Amaral, R. G., Bizario, J. C., Larson, R. E., and Espreafico, E. M. (1997). Subcellular localization of myosin-V in the B16 melanoma cells, a wild-type cell line for the dilute gene. Mol Biol Cell 8, 1971–1988.PubMedGoogle Scholar
  90. Nazarko, T. Y., Polupanov, A. S., Manjithaya, R. R., Subramani, S., and Sibirny, A. A. (2007). The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell 18, 106–118.PubMedCrossRefGoogle Scholar
  91. Nedvetsky, P. I., Stefan, E., Frische, S., Santamaria, K., Wiesner, B., Valenti, G., Hammer, J. A., III, Nielsen, S., Goldenring, J. R., Rosenthal, W., and Klussmann, E. (2007). A Role of myosin Vb and Rab11–FIP2 in the aquaporin-2 shuttle. Traffic 8, 110–123.PubMedCrossRefGoogle Scholar
  92. Nguyen, H., and Higuchi, H. (2005). Motility of myosin V regulated by the dissociation of single calmodulin. Nat Struct Mol Biol 12, 127–132.PubMedCrossRefGoogle Scholar
  93. Okada, T., Tanaka, H., Iwane, A. H., Kitamura, K., Ikebe, M., and Yanagida, T. (2007). The diffusive search mechanism of processive myosin class-V motor involves directional steps along actin subunits. Biochem Biophys Res Commun 354, 379–384.PubMedCrossRefGoogle Scholar
  94. Oku, M., Nishimura, T., Hattori, T., Ano, Y., Yamashita, S., and Sakai, Y. (2006). Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy. Autophagy 2, 272–279.PubMedGoogle Scholar
  95. Olivares, A. O., Chang, W., Mooseker, M. S., Hackney, D. D., and De La Cruz, E. M. (2006). The tail domain of myosin Va modulates actin binding to one head. J Biol Chem 281, 31326–31336.Google Scholar
  96. Pan, X., and Goldfarb, D. S. (1998). YEB3/VAC8 encodes a myristylated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. J Cell Sci 111, 2137–2147.PubMedGoogle Scholar
  97. Pan, X., Roberts, P., Chen, Y., Kvam, E., Shulga, N., Huang, K., Lemmon, S., and Goldfarb, D. S. (2000). Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol Biol Cell 11, 2445–2457.PubMedGoogle Scholar
  98. Pashkova, N., Catlett, N. L., Novak, J. L., Wu, G., Lu, R., Cohen, R. E., and Weisman, L. S. (2005). Myosin V attachment to cargo requires the tight association of two functional subdomains. J Cell Biol 168, 359–364.PubMedCrossRefGoogle Scholar
  99. Pashkova, N., Jin, Y., Ramaswamy, S., and Weisman, L. S. (2006). Structural basis for myosin V discrimination between distinct cargoes. EMBO J 25, 693–700.PubMedCrossRefGoogle Scholar
  100. Pastural, E., Barrat, F. J., Dufourcq-Lagelouse, R., Certain, S., Sanal, O., Jabado, N., Seger, R., Griscelli, C., Fischer, A., and De saint Basile, G. (1997). Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nature Genet 16, 289–292.Google Scholar
  101. Peng, Y., Tang, F., and Weisman, L. S. (2006). Palmitoylation plays a role in targeting Vac8p to specific membrane subdomains. Traffic 7, 1378–1387.PubMedCrossRefGoogle Scholar
  102. Provance, D. W., Jr., Gourley, C. R., Silan, C. M., Cameron, L. C., Shokat, K. M., Goldenring, J. R., Shah, K., Gillespie, P. G., and Mercer, J. A. (2004). Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic. Proc Natl Acad Sci U S A 101, 1868–1873.PubMedCrossRefGoogle Scholar
  103. Provance, D. W., James, T. L., and Mercer, J. A. (2002). Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes. Traffic 3, 124–132.PubMedCrossRefGoogle Scholar
  104. Provance, D. W., Jr., Wei, M., Ipe, V., and Mercer, J. A. (1996). Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc Natl Acad Sci USA 93, 14554–14558.PubMedCrossRefGoogle Scholar
  105. Purcell, T. J., Morris, C., Spudich, J. A., and Sweeney, H. L. (2002). Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci U S A 99, 14159–14164.PubMedCrossRefGoogle Scholar
  106. Purcell, T. J., Sweeney, H. L., and Spudich, J. A. (2005). A force-dependent state controls the coordination of processive myosin V. Proc Natl Acad Sci U S A 102, 13873–13878.PubMedCrossRefGoogle Scholar
  107. Puthalakath, H., Villunger, A., O’Reilly, L. A., Beaumont, J. G., Coultas, L., Cheney, R. E., Huang, D. C., and Strasser, A. (2001). Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293, 1829–1832.PubMedCrossRefGoogle Scholar
  108. Reck-Peterson, S. L., Novick, P. J., and Mooseker, M. S. (1999). The tail of a yeast class V myosin, myo2p, functions as a localization domain. Mol Biol Cell 10, 1001–1017.PubMedGoogle Scholar
  109. Reck-Peterson, S. L., Tyska, M. J., Novick, P. J., and Mooseker, M. S. (2001). The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin- based motors. J Cell Biol 153, 1121–1126.PubMedCrossRefGoogle Scholar
  110. Rief, M., Rock, R. S., Mehta, A. D., Mooseker, M. S., Cheney, R. E., and Spudich, J. A. (2000). Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci U S A 97, 9482–9486.PubMedCrossRefGoogle Scholar
  111. Rodriguez, O. C., and Cheney, R. E. (2002). Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci 115, 991–1004.PubMedGoogle Scholar
  112. Rogers, S. L., and Gelfand, V. I. (1998). Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr Biol 8, 161–164.PubMedCrossRefGoogle Scholar
  113. Rogers, S. L., Karcher, R. L., Roland, J. T., Minin, A. A., Steffen, W., and Gelfand, V. I. (1999). Regulation of melanosome movement in the cell cycle by reversible association with myosin V. J Cell Biol 146, 1265–1276.PubMedCrossRefGoogle Scholar
  114. Rose, S. D., Lejen, T., Casaletti, L., Larson, R. E., Pene, T. D., and Trifaro, J. M. (2003). Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion. J Neurochem 85, 287–298.PubMedGoogle Scholar
  115. Rosenfeld, S. S., Houdusse, A., and Sweeney, H. L. (2005). Magnesium regulates ADP dissociation from myosin V. J Biol Chem 280, 6072–6079.PubMedCrossRefGoogle Scholar
  116. Rosenfeld, S. S., and Sweeney, H. L. (2004). A model of myosin V processivity. J Biol Chem 279, 40111.Google Scholar
  117. Rossanese, O. W., Reinke, C. A., Bevis, B. J., Hammond, A. T., Sears, I. B., O’Connor, J., and Glick, B. S. (2001). A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 153, 47–62.PubMedCrossRefGoogle Scholar
  118. Sakamoto, T., Amitani, I., Yokota, E., and Ando, T. (2000). Direct observation of processive movement by individual myosin V molecules. Biochem Biophys Res Commun 272, 586–590.PubMedCrossRefGoogle Scholar
  119. Sakamoto, T., Wang, F., Schmitz, S., Xu, Y.H., Xu, Q., Molloy, J. E., Veigel, C., and Sellers, J. R. (2003). Neck length and processivity of myosin V. J Biol Chem 278, 29201–29207.PubMedCrossRefGoogle Scholar
  120. Sakamoto, T., Yildiz, A., Selvin, P. R., and Sellers, J. R. (2005). Step-size is determined by neck length in myosin V. Biochemistry 44, 16203–16210.PubMedCrossRefGoogle Scholar
  121. Sato, O., Li, X. D., and Ikebe, M. (2007). Myosin Va becomes a low duty ratio motor in the inhibited form. J Biol Chem. 282, 13228–13239.PubMedCrossRefGoogle Scholar
  122. Schmid, M., Jaedicke, A., Du, T. G., and Jansen, R. P. (2006). Coordination of endoplasmic reticulum and mRNA localization to the yeast bud. Curr Biol 16, 1538–1543.PubMedCrossRefGoogle Scholar
  123. Schott, D., Ho, J., Pruyne, D., and Bretscher, A. (1999). The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol 147, 791–808.PubMedCrossRefGoogle Scholar
  124. Schott, D. H., Collins, R. N., and Bretscher, A. (2002). Secretory vesicles transport velocity in living cells depends on the myosin-V lever arm. J Cell Biol 156, 35–39.PubMedCrossRefGoogle Scholar
  125. Scott, S. V., Nice, D. C., III, Nau, J. J., Weisman, L. S., Kamada, Y., Keizer-Gunnink, I., Funakoshi, T., Veenhuis, M., Ohsumi, Y., and Klionsky, D. J. (2000). Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 275, 25840–25849.PubMedCrossRefGoogle Scholar
  126. Sellers, J. R., and Veigel, C. (2006). Walking with myosin V. Curr Opin Cell Biol 18, 68–73.PubMedCrossRefGoogle Scholar
  127. Seperack, P. K., Mercer, J. A., Strobel, M. C., Copeland, N. G., and Jenkins, N. A. (1995). Retroviral sequences located within an intron of the dilute gene alter dilute expression in a tissue-specific manner. EMBO J 14, 2326–2332.PubMedGoogle Scholar
  128. Shepard, K. A., Gerber, A. P., Jambhekar, A., Takizawa, P. A., Brown, P. O., Herschlag, D., DeRisi, J. L., and Vale, R. D. (2003). Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad Sci U S A 100, 11429–11434.PubMedCrossRefGoogle Scholar
  129. Snyder, G. E., Sakamoto, T., Hammer, J. A., III, Sellers, J. R., and Selvin, P. R. (2004). Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via telemark configuration. Biophys J 87, 1776–1783.PubMedCrossRefGoogle Scholar
  130. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297.PubMedGoogle Scholar
  131. Stevens, R.C., and Davis, T.N. (1998). Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae. J Cell Biol 142, 711–722.PubMedCrossRefGoogle Scholar
  132. Stinchcombe, J., Bossi, G., and Griffiths, G. M. (2004). Linking albinism and immunity: the secrets of secretory lysosomes. Science 305, 55–59.PubMedCrossRefGoogle Scholar
  133. Strom, M., Hume, A. N., Tarafder, A. K., Barkagianni, E., and Seabra, M. C. (2002). A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J Biol Chem 277, 25423–25430.PubMedCrossRefGoogle Scholar
  134. Subramanian, K., Dietrich, L. E., Hou, H., LaGrassa, T. J., Meiringer, C. T., and Ungermann, C. (2006). Palmitoylation determines the function of Vac8 at the yeast vacuole. J Cell Sci 119, 2477–2485.PubMedCrossRefGoogle Scholar
  135. Sweeney, H. L., and Houdusse, A. (2007). What can myosin VI do in cells? Curr Opin Cell Biol 19, 57–66.Google Scholar
  136. Swiatecka-Urban, A., Talebian, L., Kanno, E., Moreau-Marquis, S., Coutermarsh, B., Hansen, K., Karlson, K. H., Barnaby, R., Cheney, R. E., Langford, G. M., Fukuda, M., and Stanton, B.A. (2007). Myosin VB is required for trafficking of CFTR in RAB11A-specific apical recycling endosomes in polarized human airway epithelial cells. J Biol Chem. in press.Google Scholar
  137. Syed, S., Snyder, G. E., Franzini-Armstrong, C., Selvin, P. R., and Goldman, Y. E. (2006). Adaptability of myosin V studied by simultaneous detection of position and orientation. EMBO J 25, 1795–1803.PubMedCrossRefGoogle Scholar
  138. Takagishi, Y., Futaki, S., Itoh, K., Espreafico, E. M., Murakami, N., Murata, Y., and Mochida, S. (2005). Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. J Physiol 569, 195–208.PubMedCrossRefGoogle Scholar
  139. Takagishi, Y., Oda, S., Hayasaka, S., kker-Ohno, K., Shikata, T., Inouye, M., and Yamamura, H. (1996). The dilute-lethal (dl) gene attacks a $Ca2 +$ store in the dendritic spine of Purkinje cells in mice. Neurosci Lett 215, 169–172.PubMedGoogle Scholar
  140. Takizawa, P. A., and Vale, R. D. (2000). The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc Natl Acad Sci U S A 97, 5273–5278.PubMedCrossRefGoogle Scholar
  141. Tanaka, H., Homma, K., Iwane, A. H., Katayama, E., Ikebe, R., Saito, J., Yanagida, T., and Ikebe, M. (2002). The motor domain determines the large step of myosin-V. Nature 415, 192–195.PubMedCrossRefGoogle Scholar
  142. Tang, F., Kauffman, E. J., Novak, J. L., Nau, J. J., Catlett, N. L., and Weisman, L. S. (2003). Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole. Nature 422, 87–92.PubMedCrossRefGoogle Scholar
  143. Tang, F., Peng, Y., Nau, J. J., Kauffman, E. J., and Weisman, L. S. (2006). Vac8p, an armadillo repeat protein, coordinates vacuole inheritance with multiple vacuolar processes. Traffic 7, 1368–1377.PubMedCrossRefGoogle Scholar
  144. Tauhata, S. B., Vital Dos, S. D., Taylor, E. W., Mooseker, M. S., and Larson, R. E. (2001). High affinity binding of brain myosin-Va to F-actin induced by calcium in the presence of ATP. J Biol Chem. 276, 39812–39818.PubMedCrossRefGoogle Scholar
  145. Taylor, K. A. (2007). Regulation and recycling of myosin V. Curr Opin Cell Biol 19, 67–74.PubMedCrossRefGoogle Scholar
  146. Terrak, M., Rebowski, G., Lu, R. C., Grabarek, Z., and Dominguez, R. (2005). Structure of the light chain-binding domain of myosin V. Proc Natl Acad Sci U S A 102, 12718–12723.PubMedCrossRefGoogle Scholar
  147. Terrak, M., Wu, G., Stafford, W. F., Lu, R. C., and Dominguez, R. (2003). Two distinct myosin light chain structures are induced by specific variations within the bound IQ motifs-functional implications. EMBO J 22, 362–371.PubMedCrossRefGoogle Scholar
  148. Thirumurugan, K., Sakamoto, T., Hammer, J. A., III, Sellers, J. R., and Knight, P. J. (2006). The cargo-binding domain regulates structure and activity of myosin 5. Nature 442, 212–215.PubMedCrossRefGoogle Scholar
  149. Toprak, E., Enderlein, J., Syed, S., McKinney, S. A., Petschek, R. G., Ha, T., Goldman, Y. E., and Selvin, P. R. (2006). Defocused orientation and position imaging (DOPI) of myosin V. Proc Natl Acad Sci U S A 103, 6495–6499.PubMedCrossRefGoogle Scholar
  150. Toth, J., Kovacs, M., Wang, F., Nyitray, L., and Sellers, J. R. (2005). Myosin V from Drosophila Reveals Diversity of Motor Mechanisms within the Myosin V Family. J Biol Chem 280, 30594–30603.PubMedCrossRefGoogle Scholar
  151. Trybus, K. M., Krementsova, E., and Freyzon, Y. (1999). Kinetic characterization of a monomeric unconventional myosin V construct. J Biol Chem 274, 27448–27456.PubMedCrossRefGoogle Scholar
  152. Uemura, S., Higuchi, H., Olivares, A. O., De La Cruz, E. M., and Ishiwata, S. (2004). Mechanochemical coupling of two substeps in a single myosin V motor. Nat Struct Mol Biol. 11, 877–883.Google Scholar
  153. VanBuren, P., Waller, G. S., Harris, D. E., Trybus, K. M., Warshaw, D. M., and Lowey, S. (1994). The essential light chain is required for full force production by skeletal muscle myosin. Proc Natl Acad Sci USA 91, 12403–12407.Google Scholar
  154. Varadi, A., Tsuboi, T., and Rutter, G. A. (2005). Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 16, 2670–2680.PubMedCrossRefGoogle Scholar
  155. Veigel, C., Schmitz, S., Wang, F., and Sellers, J. R. (2005). Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7, 861–869.PubMedCrossRefGoogle Scholar
  156. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R., and Molloy, J. E. (2001). The gated gait of the precessive molecular motor, myosin V. Nat Cell Biol 4, 59–65.CrossRefGoogle Scholar
  157. Veit, M., Laage, R., Dietrich, L., Wang, L., and Ungermann, C. (2001). Vac8p release from the SNARE complex and its palmitoylation are coupled and essential for vacuole fusion. EMBO J 20, 3145–3155.Google Scholar
  158. Volkmann, N., Liu, H., Hazelwood, L., Krementsova, E. B., Lowey, S., Trybus, K. M., and Hanein, D. (2005). The structural basis of Myosin v processive movement as revealed by electron cryomicroscopy. Mol Cell 19, 595–605.PubMedCrossRefGoogle Scholar
  159. Volpicelli, L. A., Lah, J. J., Fang, G., Goldenring, J. R., and Levey, A. I. (2002). Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor. J Neurosci 22, 9776–9784.PubMedGoogle Scholar
  160. Wagner, W., Bielli, P., Wacha, S., and Ragnini-Wilson, A. (2002). Mlc1p promotes septum closure during cytokinesis via the IQ motifs of the vesicle motor Myo2p. EMBO J 21, 6397–6408.PubMedCrossRefGoogle Scholar
  161. Wagner, W., Fodor, E., Ginsburg, A., and Hammer, J. A., III (2006). The binding of DYNLL2 to myosin Va requires alternatively spliced exon B and stabilizes a portion of the myosin’s coiled-coil domain. Biochemistry 45, 11564–11577.PubMedCrossRefGoogle Scholar
  162. Wakabayashi, Y., Dutt, P., Lippincott-Schwartz, J., and Arias, I. M. (2005). Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc Natl Acad Sci U S A 102, 15087–15092.PubMedCrossRefGoogle Scholar
  163. Walker, M. L., Burgess, S. A., Sellers, J. R., Wang, F., Hammer, J. A., III, Trinick, J., and Knight, P. J. (2000). Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807.PubMedCrossRefGoogle Scholar
  164. Wang, F., Chen, L., Arcucci, O., Harvey, E. V., Bowers, B., Xu, Y., Hammer, J. A., III, and Sellers, J. R. (2000). Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J Biol Chem 275, 4329–4335.PubMedCrossRefGoogle Scholar
  165. Wang, F., Thirumurugan, K., Stafford, W. F., Hammer, J. A., III, Knight, P. J., and Sellers, J. R. (2004). Regulated conformation of myosin V. J Biol Chem 279, 2333–2336.PubMedCrossRefGoogle Scholar
  166. Wang, Y. X., Catlett, N. L., and Weisman, L. S. (1998). Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J Cell Biol 140, 1063–1074.PubMedCrossRefGoogle Scholar
  167. Wang, Y. X., Kauffman, E. J., Duex, J. E., and Weisman, L. S. (2001). Fusion of docked membranes requires the armadillo repeat protein Vac8p. J Biol Chem 276, 35133–35140.PubMedCrossRefGoogle Scholar
  168. Warshaw, D. M., Kennedy, G. G., Work, S. S., Krementsova, E. B., Beck, S., and Trybus, K. M. (2005). Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J 88, L30–L32.Google Scholar
  169. Watanabe, S., Mabuchi, K., Ikebe, R., and Ikebe, M. (2006). Mechanoenzymatic characterization of human myosin Vb. Biochemistry 45, 2729–2738.PubMedCrossRefGoogle Scholar
  170. Watanabe, T. M., Tanaka, H., Iwane, A. H., Maki-Yonekura, S., Homma, K., Inoue, A., Ikebe, R., Yanagida, T., and Ikebe, M. (2004). A one-headed class V myosin molecule develops multiple large (approximately 32-nm) steps successively. Proc Natl Acad Sci U S A 101, 9630–9635.PubMedCrossRefGoogle Scholar
  171. Wei, Q., Wu, X. F., and Hammer, J. A., III (1997). The predominant defect in dilute melanocytes is in melanosome distribution and not cell shape, supporting a role for myosin V in melanosome transport. J Musc Res Cell Motility 18, 517–527.CrossRefGoogle Scholar
  172. Weisman, L. S. (2003). Yeast vacuole inheritance and dynamics. Annu Rev Genet 37, 435–460.PubMedCrossRefGoogle Scholar
  173. Weisman, L. S. (2006). Organelles on the move: insights from yeast vacuole inheritance. Nat Rev Mol Cell Biol 7, 243–252.PubMedCrossRefGoogle Scholar
  174. Westbroek, W., Lambert, J., Bahadoran, P., Busca, R., Herteleer, M. C., Smit, N., Mommaas, M., Ballotti, R., amd Naeyaert, J. M. (2003). Interactions of human Myosin Va isoforms, endogenously expressed in human melanocytes, are tightly regulated by the tail domain. J Invest Dermatol 120, 465–475.PubMedCrossRefGoogle Scholar
  175. Wilson, S. M., Yip, R., Swing, D. A., O’Sullivan, T. N., Zhang, Y., Novak, E. K., Swank, R. T., Russell, L. B., Copeland, N. G., and Jenkins, N. A. (2000). A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci U S A 97, 7933–7938.PubMedCrossRefGoogle Scholar
  176. Win, T. Z., Gachet, Y., Mulvihill, D. P., May, K. M., and Hyams, J. S. (2001). Two type V myosins with non-overlapping functions in the fission yeast Schizosaccharomyces pombe: Myo52 is concerned with growth polarity and cytokinesis, Myo51 is a component of the cytokinetic actin ring. J Cell Sci 114, 69–79.PubMedGoogle Scholar
  177. Wu, X., Bowers, B., Rao, K., Wei, Q., and Hammer, J. A., III (1998a). Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo. J Cell Biol 143, 1–20.CrossRefGoogle Scholar
  178. Wu, X., Bowers, B., Wei, Q., Kocher, B., and Hammer, J. A.,3d. (1997). Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. J Cell Sci 110, 847–859.PubMedGoogle Scholar
  179. Wu, X., Kocher, B., Wei, Q., and Hammer, J. A., III (1998b). Myosin Va associates with microtubule-rich domains in both interphase and dividing cells. Cell Motil Cytoskeleton 40, 286–303.CrossRefGoogle Scholar
  180. Wu, X., Sakamoto, T., Zhang, F., Sellers, J. R., and Hammer, J. A., III (2006). In vitro reconstitution of a transport complex containing Rab27a, melanophilin and myosin Va. FEBS Lett 580, 5863–5868.PubMedCrossRefGoogle Scholar
  181. Wu, X., Wang, F., Rao, K., Sellers, J. R., and Hammer, J. A., III (2002a.) Rab27a is an essential component of melanosome receptor for myosin Va. Mol Biol Cell 13, 1735–1749.Google Scholar
  182. Wu, X. S., Rao, K., Zhang, H., Wang, F., Sellers, J. R., Matesic, L. E., Copeland, N. G., Jenkins, N. A., and Hammer, J. A., III (2002b.) Identification of an organelle receptor for myosin-Va. Nat Cell Biol 4, 271–278.Google Scholar
  183. Wu, X. S., Tsan, G. L., and Hammer, J. A., III (2005). Melanophilin and myosin Va track the microtubule plus end on EB1. J Cell Biol 171, 201–207.PubMedCrossRefGoogle Scholar
  184. Yamashita, R. A., Sellers, J. R., and Anderson, J. B. (2000). Identification and analysis of the myosin superfamily in Drosophila: a database approach. J Muscle Res Cell Motil 21, 491–505.PubMedCrossRefGoogle Scholar
  185. Yan, Q., Sun, W., Kujala, P., Lotfi, Y., Vida, T. A., and Bean, A. J, (2005). CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol Biol Cell 16, 2470–2482.PubMedCrossRefGoogle Scholar
  186. Yengo, C. M., De La Cruz, E. M., Safer, D., Ostap, E. M., and Sweeney, H. L. (2002). Kinetic characterization of the weak binding states of myosin V. Biochemistry 41, 8508–8517.Google Scholar
  187. Yengo, C. M., and Sweeney, H. L. (2004). Functional role of loop 2 in myosin V. Biochemistry 43, 2605–2612.PubMedCrossRefGoogle Scholar
  188. Yildiz, A., Forkey, J. N., McKinney, S.A., Ha, T., Goldman, Y. E., and Selvin, P. R. (2003). Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065.PubMedCrossRefGoogle Scholar
  189. Yin, H., Pruyne, D., Huffaker, T. C., and Bretscher, A. (2000). Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015.PubMedCrossRefGoogle Scholar
  190. Yoshimura, A., Fujii, R., Watanabe, Y., Okabe, S., Fukui, K., and Takumi, T. (2006). Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16, 2345–2351.PubMedCrossRefGoogle Scholar
  191. Zappacosta, F., Huddleston, M. J., Karcher, R. L., Gelfand, V. I., Carr, S. A., and Annan, R. S. (2002). Improved sensitivity for phosphopeptide mapping using capillary column HPLC and microionspray mass spectrometry: comparative phosphorylation site mapping from gel-derived proteins. Anal Chem 74, 3221–3231.PubMedCrossRefGoogle Scholar
  192. Zhu, G., Spellman, P. T., Volpe, T., Brown, P. O., Botstein, D., Davis, T. N., and Futcher, B. (2000). Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406, 90–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • James R. Sellers
    • 1
  • Lois S. Weisman
    • 2
  1. 1.Laboratory of Molecular PhysiologyNational Heart,Lung and Blood InstituteBethesda
  2. 2.Department of Cell&Developmental Biology Life Sciences InstituteUniversity of MichiganAnn ArborUSA

Personalised recommendations