Skip to main content

Non-Muscle Myosin II

  • Chapter
Myosins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 7))

Abstract

In mammals, three different isoforms of nonmuscle myosin II, II-A,II-B and II-C, are widely distributed throughout the entire organism. while a few cells contain a single isoform, most contain more than one,including isoforms generated by alternative splicing. In humans, these isoforms are encoded by three different genes, MYH9 (II-A), MYH10 and MYH14(II-C), present on threee different chromosomes. These proteins play a role in many fundamental cellular and developmental processes such as cell-cell adhesion, cell migration and cytokinesis. Although all three isoforms share a number of biochemical and structural properties, there are also importand differences among them that are being investigated at both the cellular level as well as the relaticely specific inhibitor of myosin MgATPase activity, blebbistatin, are two important new tools helping to ellucidate the function of nonmuscle myosin II. The use of homologous recombination to generate mice that have been ablated for, or have ,markedly decreased amounts of each isoform, or have point mutations in the various isoforms, is also providing new information about the role of these proteins in vivo. The purpose of the present chapter is to review the properties of nonmuscle muosin II and its signalilng pathways and to provide examples of its function in cells fromo a number of species, as well as intact animals

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C. L., and Nelson, W. J. (1998). Cytomechanics of cadherin-mediated cell-cell adhesion. Curr Opin Cell Biol 10, 572–577.

    PubMed  CAS  Google Scholar 

  • Adelstein, R. S., and Conti, M. A. (1975). Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature 256, 597–598.

    PubMed  CAS  Google Scholar 

  • Alblas, J., Ulfman, L., Hordijk, P., and Koenderman, L. (2001). Activation of RhoA and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell 12, 2137–2145.

    PubMed  CAS  Google Scholar 

  • Allingham, J. S., Smith, R., and Rayment, I. (2005). The structural basis of blebbistatin inhibition and specificity for myosin II. Nat Struct Mol Biol 12, 378–379.

    PubMed  CAS  Google Scholar 

  • Amano, M., Ito, M., Kimura, K., Fukata, Y. Chihara, K., Nakano, T., Matsuura, Y., and Kaibuchi, K. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271, 20246–20249.

    PubMed  CAS  Google Scholar 

  • Avizienyte, E., and Frame, M. C. (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 17, 542–547.

    PubMed  CAS  Google Scholar 

  • Avizienyte, E., Fincham, V. J., Brunton, V. G., and Frame, M. C. (2004). Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell 15, 2794–2803.

    PubMed  CAS  Google Scholar 

  • Bao, J., Jana, S. S., and Adelstein, R. S. (2005). Vertebrate nonmuscle myosin II isoforms rescue small interfering RNA-induced defects in COS-7 cell cytokinesis. J Biol Chem 280, 19594–19599.

    PubMed  CAS  Google Scholar 

  • Bao, J., Ma, X., Liu, C., and Adelstein, R. S. (2007). Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice. J Biol Chem (2007) 282, 22102–22111.

    CAS  Google Scholar 

  • Bement, W. M., Forscher, P., and Mooseker, M. S. (1993). A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol 121, 565–578.

    PubMed  CAS  Google Scholar 

  • Berg, J. S., Powell, B. C., and Cheney, R. E. (2001). A millennial myosin census. Mol Biol Cell $12$, 780–794.

    Google Scholar 

  • Bershadsky, A. (2004). Magic touch: how does cell-cell adhesion trigger actin assembly? Trends Cell Biol 14, 589–593.

    Google Scholar 

  • Bertet, C., Sulak, L., and Lecuit, T. (2004). Myosin-dependent junction remodeling controls planar cell intercalation and axis elongation. Nature 429, 667–671.

    PubMed  CAS  Google Scholar 

  • Betapudi, V., Licate, L. S., and Egelhoff, T. T. (2006). Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res 66, 4725–4733.

    PubMed  CAS  Google Scholar 

  • Birukov, K. G., Schavocky, J. P., Shirinsky, V. P., Chibalina, M. V., Van Eldik, L. J., and Watterson, D. M. (1998). Organization of the genetic locus for chicken myosin light chain kinase is complex: Multiple proteins are encoded and exhibit differential expression and localization. J Cell Biochem 70, 402–413.

    PubMed  CAS  Google Scholar 

  • Bosgraaf, L., and van Haastert, P. J. M. (2006). The regulation of myosin II in Dictyostelium. Eur J. Cell Biol 85, 969–979.

    PubMed  CAS  Google Scholar 

  • Braga, V. M. M., Machesky, L. M., Hall, A., and Hotchin, N. A. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137, 1421–1431.

    PubMed  CAS  Google Scholar 

  • Brahmbhatt, A. A., and Klemke, R. L. (2003). ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. J Biol Chem 278, 13016–13025.

    PubMed  CAS  Google Scholar 

  • Bridgman, P. C., Dave, S., Asnes, C. F., Tullio, A. N., and Adelstein, R. S. (2001). Myosin IIB is required for growth cone motility. J Neurosci 21, 6159–6169.

    PubMed  CAS  Google Scholar 

  • Brown, M. E., and Bridgman, P. C. (2003). Retrograde flow rate is increased in growth cones from myosin IIB knockout mice. J Cell Sci 116, 1087–1094.

    PubMed  CAS  Google Scholar 

  • Burridge, K., and Wennerberg, K. (2004). Rho and rac take center stage. Cell 116, 167–179.

    PubMed  CAS  Google Scholar 

  • Burton, K., and Taylor, D. L. (1997). Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454.

    PubMed  CAS  Google Scholar 

  • Cantrell, J. R., Haller, J. A., and Ravitch, M. M. (1958). A syndrome of congenital defects involving the abdominal wall, sternum, diaphragm, pericardium and heart. Surg Gynec Obstet 107, 602–614.

    PubMed  CAS  Google Scholar 

  • Chacko, S., Conti, M. A., and Adelstein, R. S. (1977). Effect of phosphorylation of smooth muscle myosin on actin activation and Ca$2 + $ regulation. Proc Natl Acad Sci USA 74, 129–133.

    PubMed  CAS  Google Scholar 

  • Chang, D. C., Meng, C. (1995). A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo. J Cell Biol 131, 1539–1545.

    PubMed  CAS  Google Scholar 

  • Chang, Y., Aurade, F., Larbret, F., Zhang, Y., Le Couedic, J.-P., Momeux, L., Larghero, J., Bertoglio, J., Louache, F., Cramer, E. and others. (2007). Proplatelet formation is regulated by the Rho/ROCK pathway. Blood 109, 4229–4236.

    PubMed  CAS  Google Scholar 

  • Chen, Z., Naveiras, O., Balduini, A., Mammoto, A., Conti, M. A., Adelstein, R. S., Ingber, D., Daley, G. Q., and Shivdasani, R. A. (2007). The May-Hegglin anomaly gene Myh9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood, 110, 171–179.

    PubMed  CAS  Google Scholar 

  • Chew, T.-L., Wolf, W. A., Gallagher, P. J., Matsumura, F., and Chisholm, R. L. (2002). A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. J Cell Biol 156, 543–553.

    PubMed  CAS  Google Scholar 

  • Chrzanowska-Wodnicka, M., and Burridge, K. (1996). Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133, 1403–1415.

    PubMed  CAS  Google Scholar 

  • Ciapa, B., Pesando, D., Wilding, M., and Whitaker, M. (1994). Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature 368, 875–878.

    PubMed  CAS  Google Scholar 

  • Conti, M. A., Even-Ram, S., Liu, C., Yamada, K. M., and Adelstein, R. S. (2004). Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J Biol Chem 279, 41263–41266.

    PubMed  CAS  Google Scholar 

  • Craig, R., and Woodhead, J. L. (2006). Structure and function of myosin filaments. Curr Opin Struct Biol 16, 204–212.

    PubMed  CAS  Google Scholar 

  • D’Atri, F., and Citi, S., (2002). Molecular complexity of vertebrate tight junctions (Review). Mol Membrane Biol 19, 103–112.

    CAS  Google Scholar 

  • D’Avino, P. P., Savoian, M. S., and Glover, D. M. (2005). Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy. J Cell Sci 118, 1549–1558.

    PubMed  CAS  Google Scholar 

  • Dawes-Hoang, R. E., Parmar, K. M., Christiansen, A. E., Phelps, C. B., Brand, A. H., and Wieschaus, E. R. (2005). folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178.

    PubMed  CAS  Google Scholar 

  • Dean, S. O., and Spudich, J. A. (2006). Rho kinase’s role in myosin recruitment to the equatorial cortex of mitotic Drosophila S2 cells is for myosin regulatory light chain phosphorylation. PLoS ONE 1, e131.

    PubMed  Google Scholar 

  • DeBiasio, R. L., LaRocca, G. M., Post, P. L., and Taylor, D. L. (1996). Myosin II transport, organization, and phosphorylation: Evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion. Mol Biol Cell 7, 1259–1282.

    PubMed  CAS  Google Scholar 

  • De Lozanne, A., and Spudich, J. A. (1987). Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086–1091.

    PubMed  Google Scholar 

  • Di Cunto, F., Imarisio, S., Hirsch, E., Broccoli, V., Bulfone, A., Migheli, A., Atzori, C., Turco, E., Triolo, R., Dotto, G. P. and others. (2000). Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron 28, 115–127.

    PubMed  Google Scholar 

  • Donaudy, F., Snoeckx, R., Pfister, M., Zenner, H.-P., Blin, N., Di Stazio, M., Ferrara, A., Lanzara, C., Ficarella, R., Declau, F. and others. (2004). Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4). Am J Hum Genet 74, 770–776.

    PubMed  CAS  Google Scholar 

  • Drees, F., Pokutta, S., Yamada, S., Nelson, W. J., and Weis, W. I. (2005). $\UPalpha $-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell 123, 903–915.

    Google Scholar 

  • Dulyaninova, N. G., Malashkevich, V. N., Almo, S. C., and Bresnick, A. R. (2005). Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation. Biochemistry 44, 6867–6876.

    PubMed  CAS  Google Scholar 

  • Echard, A., Hickson, G. R. X., Foley, E., and O’Farrell, P. H. (2004). Terminal cytokinesis events uncovered after an RNAi screen. Curr Biol 14, 1685–1693.

    PubMed  CAS  Google Scholar 

  • Eda, M., Yonemura, S., Kato, T., Watanabe, N., Ishizaki, T., Madaule, P., and Narumiya, S. (2001). Rho-dependent transfer of citron-kinase to the cleavage furrow of dividing cells. J Cell Sci 114, 3273–3284.

    PubMed  CAS  Google Scholar 

  • Eddy, R. J., Pierini, L. M., Matsumura, F., and Maxfield, F. R. (2000). Ca$2 + $-dependent myosin II activation is required for uropod retraction during neutrophil migration. J Cell Sci 113, 1287–1298.

    PubMed  CAS  Google Scholar 

  • Eggert, U. S., Kiger, A. A., Richter, C., Perlman, Z. E., Perrimon, N., Mitchison, T. J., and Field, C. M. (2004). Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PloS Biol 2, e379.

    Google Scholar 

  • Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689.

    PubMed  CAS  Google Scholar 

  • Erez, N., Bershadsky, A., and Geiger, B. (2005). Signaling from adherens-type junctions. Eur J Cell Biol 84, 235–244.

    PubMed  CAS  Google Scholar 

  • Even-Faitelson, L., and Ravid. S. (2006). PAK1 and aPKCUPRζ regulate myosin II-B phosphorylation: A novel signaling pathway regulating filament assembly. Mol Biol Cell 17, 2869–2881.

    PubMed  CAS  Google Scholar 

  • Even-Faitelson, L., Rosenberg, M., and Ravid, S. (2005). PAK1 regulates myosin II-B phosphorylation, filament assembly, localization and cell chemotaxis. Cell Signal 17, 1137–1148.

    PubMed  CAS  Google Scholar 

  • Even-Ram, S., and Yamada, K. M. (2005). Cell migration in 3D matrix. Curr Opin Cell Biol 17, 524–532.

    PubMed  CAS  Google Scholar 

  • Even-Ram, S., Doyle, A. D., Conti, M. A., Matsumoto, K., Adelstein, R. S., and Yamada, K. M. (2007). Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol 9, 299–309.

    PubMed  CAS  Google Scholar 

  • Feng, J., Ito, M., Ichikawa, K., Isaka, N., Nishikawa, M., Hartshorne, D. J., and Nakano, T. (1999). Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem 274, 37385–37390.

    PubMed  CAS  Google Scholar 

  • Fishkind, D. J., and Wang, Y.-l. (1993). Orientation and three-dimensional organization of actin filaments in dividing cultured cells. J Cell Biol 123, 837–848.

    PubMed  CAS  Google Scholar 

  • Fox, D. T., and Peifer, M. (2007). Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction in Drosophila. Development 134, 567–578.

    PubMed  CAS  Google Scholar 

  • Franke, J. D., Dong, F., Rickoll, W. L., Kelley, M. J., and Kiehart, D. P. (2005a). Rod mutations associated with MYH9-related disorders disrupt nonmuscle myosin-IIA assembly. Blood 105, 161–169.

    CAS  Google Scholar 

  • Franke, J. D., Montague, R. A., and Kiehart, D. P. (2005b). Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr Biol 15, 2208–2221.

    CAS  Google Scholar 

  • Franke, J. D., Boury, A. L., Gerald, N. J., and Kiehart, D. P. (2006). Native nonmuscle myosin II stability and light chain binding in Drosophila melanogaster. Cell Motil Cytoskel 63, 604–622.

    CAS  Google Scholar 

  • Fujiwara, K., and Pollard, T. D. (1976). Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrows, and mitotic spindle of human cells. J Cell Biol 71, 848–875.

    PubMed  CAS  Google Scholar 

  • Fukata, M., and Kaibuchi, K. (2001). Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol 2, 887–897.

    PubMed  CAS  Google Scholar 

  • Garcia-Mata, K. R., and Burridge, K. (2007). Catching a GEF by its tail. Trends Cell Biol 17, 36–43.

    PubMed  CAS  Google Scholar 

  • Giannone, G., Dubin-Thaler, B. J., Dobereiner, H.-G., Kieffer, N., Bresnick, A. R., and Sheetz, M. P. (2004). Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443.

    PubMed  CAS  Google Scholar 

  • Giannone, G., Dubin-Thaler, B. J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W., Dobereiner, H.-G., Freund, Y., Borisy, G. and others. (2007). Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575.

    PubMed  CAS  Google Scholar 

  • Glotzer, M. (2005). The molecular requirements for cytokinesis. Science 307, 1735–1739.

    PubMed  CAS  Google Scholar 

  • Golomb, E., Ma, X., Jana, S. S., Preston, Y. A., Kawamoto, S., Shoham, N. G., Goldin, E., Conti, M. A., Sellers, J. R., and Adelstein, R. S. (2004). Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family. J Biol Chem 279, 2800–2808.

    PubMed  CAS  Google Scholar 

  • Goodwin, M., and Yap, A. S. (2004). Classical cadherin adhesion molecules: coordinating cell adhesion, signaling and the cytoskeleton. J Mol Histol 35, 839–844.

    PubMed  CAS  Google Scholar 

  • Gorecka, A., Aksoy, M. O., and Hartshorne, D. J. (1976). The effect of phosphorylation of gizzard myosin on actin activation. Biochem Biophys Res Commun 71, 325–331.

    PubMed  CAS  Google Scholar 

  • Guha, M., Zhou, M., and Wang, Y.-l. (2005). Cortical actin turnover during cytokinesis requires myosin II. Curr Biol 15, 732–736.

    PubMed  CAS  Google Scholar 

  • Gupton, S. L., and Waterman-Storer, C. M. (2006). Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125, 1361–1374.

    PubMed  CAS  Google Scholar 

  • Halbleib, J. M., and Nelson, W. J. (2006). Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes & Dev 20, 3199–3214.

    CAS  Google Scholar 

  • Heath, K. E., Campos-Barros, A., Toren, A., Rozenfeld-Granot, G., Carlsson, L. E., Savige, J., Denison, J. C., Gregory, M. C., White, J. G., Barker, D. F. and others. (2001). Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet 69, 1033–1045.

    PubMed  CAS  Google Scholar 

  • Hu, A., Wang, F., and Sellers, J. R. (2002). Mutations in human nonmuscle myosin IIA found in patients with May-Hegglin anomaly and Fechtner Syndrome result in impaired enzymatic function. J Biol Chem 277, 46512–46517.

    PubMed  CAS  Google Scholar 

  • Ikebe, M., and Reardon, S. (1990). Phosphorylation of bovine platelet myosin by protein kinase C. Biochemistry 29, 2713–2720.

    PubMed  CAS  Google Scholar 

  • Ikebe, M., Onishi, H., and Watanabe, S. (1977). Phosphorylation and dephosphorylation of a light chain of the chicken gizzard myosin molecule. J Biochem 82, 299–302.

    PubMed  CAS  Google Scholar 

  • Ikebe, M., Koretz, J., and Hartshorne, D. J. (1988). Effects of phosphorylation of light chain residues threonine 18 and serine 19 on the properties and conformation of smooth muscle myosin J Biol Chem 263, 6432–6437.

    Google Scholar 

  • Ikebe, M., Komatsu, S., Woodhead, J. L., Mabuchi, K., Ikebe, R., Saito, J., Craig, R., and Higashihara, M. (2001). The tip of the coiled-coil rod determines the filament formation of smooth muscle and nonmuscle myosin. J Biol Chem 276, 30293–30300.

    PubMed  CAS  Google Scholar 

  • Itoh, K., and Adelstein, R. S. (1995). Neuronal cell expression of inserted isoforms of vertebrate nonmuscle myosin heavy chain II-B. J Biol Chem 270, 14533–14540.

    PubMed  CAS  Google Scholar 

  • Ivanov, A. I., McCall, I. C., Parkos, C. A., and Nusrat, A. (2004). Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell 15, 2639–2651.

    PubMed  CAS  Google Scholar 

  • Ivanov, A. I., Hunt, D., Utech, M., Nusrat, A., and Parkos, C. A. (2005). Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol Biol Cell 16, 2636–2650.

    PubMed  CAS  Google Scholar 

  • Jaffer, Z. M., and Chernoff, J. (2004). The cross-rho’ds of cell-cell adhesion. J Biol Chem 279, 35123–35126.

    PubMed  CAS  Google Scholar 

  • Jana, S. S., Kawamoto, S., and Adelstein, R. S. (2006). A specific isoform of nonmuscle myosin II-C is required for cytokinesis in a tumor cell line. J Biol Chem 281, 24662–24670.

    PubMed  CAS  Google Scholar 

  • Kamijo, K., Ohara, N., Abe, M. Uchimura, T., Hosoya, H., Lee, J.-S., and Miki, T. (2006). Dissecting the role of Rho-mediated signaling in contractile ring formation. Mol Biol Cell 17, 43–55.

    PubMed  CAS  Google Scholar 

  • Kanada, M., Nagasaki, A., and Uyeda, T. Q. P. (2005). Adhesion-dependent and contractile ring-independent equatorial furrowing during cytokinesis in mammalian cells. Mol Biol Cell 16, 3865–3872.

    PubMed  CAS  Google Scholar 

  • Katoh, K., Kano, Y., Amano, M., Kaibuchi, K., and Fujiwara, K. (2001). Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts. Am J Physiol Cell Physiol 280, C1669-C1679.

    PubMed  CAS  Google Scholar 

  • Kawamoto, S., Bengur, A. R., Sellers, J. R., and Adelstein, R. S. (1989). In situ phosphorylation of human platelet myosin heavy and light chains by protein kinase C. J Biol Chem 264, 2258–2265.

    PubMed  CAS  Google Scholar 

  • Kawano, Y., Fukata, Y., Oshiro, N., Amano, M., Nakamura, T., Ito, M., Matsumura, F., Inagaki, M., and Kaibuchi, K. (1999). Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 147, 1023–1037.

    PubMed  CAS  Google Scholar 

  • Kelley, C. A., Takahashi, M., Yu, J. H., and Adelstein, R. S. (1993). An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J Biol Chem 268, 12848–12854.

    PubMed  CAS  Google Scholar 

  • Kelley, C. A., Sellers, J. R., Gard, D. L., Bui, D., Adelstein, R. S., and Baines, I. C. (1996). Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities. J Cell Biol 134, 675–687.

    PubMed  CAS  Google Scholar 

  • Kim, K.-Y., Kovacs, M., Kawamoto, S., Sellers, J. R., and Adelstein, R. S. (2005). Disease-associated mutations and alternative splicing alter the enzymatic and motile activity of nonmuscle myosins II-B and II-C. J Biol Chem 280, 22769–22775.

    PubMed  CAS  Google Scholar 

  • Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., and Okawa, K. and others. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-Kinase). Science: New Series 273, 245–248.

    CAS  Google Scholar 

  • Kolega, J. (2003). Asymmetric distribution of myosin IIB in migrating endothelial cells is regulated by a rho-dependent kinase and contributes to tail retraction. Mol Biol Cell 14, 4745–4757.

    PubMed  CAS  Google Scholar 

  • Kolega, J. (2006). The role of myosin II motor activity in distributing myosin asymmetrically and coupling protrusive activity to cell translocation. Mol Biol Cell 17, 4435–4445.

    PubMed  CAS  Google Scholar 

  • Komatsu, S., Yano, T., Shibata, M., Tuft, R.A. and Ikebe, M. (2000). Effects of the regulatory light chain phosphorylation of myosin II on mitosis and cytokinesis of mammalian cells. J. Biol. Chem. 275, 34512–34520.

    PubMed  CAS  Google Scholar 

  • Kosako, H., Goto, H., Yanagida, M., Matsuzawa, K., Fujita, M., Tomono, Y., Okigaki, T., Odai, H., Kaibuchi, K., and Inagaki, M. (1999). Specific accumulation of Rho-associated kinase at the cleavage furrow during cytokinesis: cleavage furrow-specific phosphorylation of intermediate filaments. Oncogene $18$, 2783–2788

    Google Scholar 

  • Kosako, H., Yoshida, T., Matsumura, F., Ishizaki, T., Narumiya, S., and Inagaki, M. (2000). Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 19, 6059–6064.

    PubMed  CAS  Google Scholar 

  • Kovacs, E. M., Goodwin, M., Ali, R. G., Paterson, A. D., and Yap, A. S. (2002). Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr Biol 12, 379–382.

    PubMed  CAS  Google Scholar 

  • Kovacs, M., Wang, F., Hu, A., Zhang, Y., and Sellers, J. R. (2003). Functional divergence of human cytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform. J Biol Chem 278, 38132–38140.

    PubMed  CAS  Google Scholar 

  • Kovacs, M., Toth, J., Nyitray, L., Sellers, J. R. (2004a). Two-headed binding of the unphosphorylated nonmuscle heavy meromyosin ADP complex to actin. Biochem 43, 4219–4226.

    Google Scholar 

  • Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A., and Sellers, J. R. (2004b). Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279, 35557–35563.

    CAS  Google Scholar 

  • Landsverk, M. L., and Epstein, H. F. (2005). Genetic analysis of myosin II assembly and organization in model organisms. Cell Mol Life Sci 62, 2270–2282.

    PubMed  CAS  Google Scholar 

  • Lecuit, T. (2005). Adhesion remodeling underlying tissue morphogenesis. Trends Cell Biol 15, 34–42.

    PubMed  CAS  Google Scholar 

  • Lee, J. H., Koh, H., Kim, M., Kim, Y., Lee, S. Y., Karess, R. E., Lee, S. H., Shong, M., Kim, J. M., Kim, J. and others. (2007). Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature, May 7;[Epub ahead of print] PMID: 17486097 [PubMed – as supplied by publisher].

    Google Scholar 

  • Leung, T., Manser, E., Tan, L., and Lim, L. (1995). A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270, 29051–29054.

    PubMed  CAS  Google Scholar 

  • Li, Z.-H., and Bresnick, A. R. (2006). The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res 66, 5173–5180.

    PubMed  CAS  Google Scholar 

  • Limouze, J., Straight, A. F., Mitchison, T., and Sellers, J. R. (2004). Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil 25, 337–341.

    PubMed  CAS  Google Scholar 

  • Liu, J., Wendt, T., Taylor, D., and Taylor, K. (2003). Refined model of the 10S conformation of smooth muscle myosin by cryo-electron microscopy 3D image reconstruction. J Mol Biol 329, 963–972.

    PubMed  CAS  Google Scholar 

  • Lo, C.-M., Buxton, D. B., Chua, G. C. H., Dembo, M., Adelstein, R. S., and Wang, Y.-L. (2004). Nonmuscle myosin IIB is involved in the guidance of fibroblast migration. Mol Biol Cell 15, 982–989.

    PubMed  CAS  Google Scholar 

  • Lucero, A., Stack, C., Bresnick, A. R., and Shuster, C. B. (2006). A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs. Mol Biol Cell 17, 4093–4104.

    PubMed  CAS  Google Scholar 

  • Ludowyke, R. I., Peleg, I., Beaven, M. A., and Adelstein, R. S. (1989). Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J Biol Chem 264, 12492–12501.

    PubMed  CAS  Google Scholar 

  • Ludowyke, R. I., Elgundi, Z., Kranenburg, T., Stehn, J. R., Schmitz-Peiffer, C., Hughes, W. E., and Biden, T. J. (2006). Phosphorylation of nonmuscle myosin heavy chain IIA on Ser$1917$ is mediated by protein kinase CβII and coincides with the onset of stimulated degranulation of RBL-2H3 mast cells. J Immunol 177, 1492–1499.

    PubMed  CAS  Google Scholar 

  • Ma, X., Kawamoto, S., Hara, Y., and Adelstein, R. S. (2004). A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol Biol Cell 15, 2568–2579.

    PubMed  CAS  Google Scholar 

  • Ma, X., Kawamoto, S., Uribe, J., and Adelstein, R. S. (2006). Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse brain development. Mol Biol Cell 17, 2138–2149.

    PubMed  CAS  Google Scholar 

  • Ma, X., Bao, J., and Adelstein, R. S. (2007). Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B ablated and mutated mice. Mol Biol Cell 18, 2305–2312.

    PubMed  CAS  Google Scholar 

  • Mabuchi, I., and Okuno, M. (1977). The effect of myosin antibody on the division of starfish blastomeres. J Cell Biol 74, 251–263.

    PubMed  CAS  Google Scholar 

  • Madaule, P., Eda, M., Watanabe, N., Fujisawa, K., Matsuoka, T., Bito, H., Ishizaki, T., and Narumiya, S. (1998). Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394, 491–494.

    PubMed  CAS  Google Scholar 

  • Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for the small GTP binding protein Rho. The EMBO J 15, 2208–2216.

    CAS  Google Scholar 

  • Matsumura, F. (2005). Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol 15, 371–377.

    PubMed  CAS  Google Scholar 

  • Matsumura, F., Ono, S., Yamakita, Y., Totsukawa, G., and Yamashiro, S. (1998). Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J Cell Biol 140, 119–129.

    PubMed  CAS  Google Scholar 

  • Maupin, P., Phillips, C. L., Adelstein, R. S., and Pollard, T. D. (1994). Differential localization of myosin-II isozymes in human cultured cells and blood cells. J Cell Sci 107, 3077–3090.

    PubMed  CAS  Google Scholar 

  • Medeiros, N. A., Burnette, D. T., and Forscher, P. (2006). Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8, 215–226.

    PubMed  CAS  Google Scholar 

  • Meshel, A. S., Wei, Q., Adelstein, R. S., and Sheetz, M. P. (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7, 157–164.

    PubMed  CAS  Google Scholar 

  • Miyake, Y., Inoue, N., Nishimura, K., Kinoshita, N., Hosoya, H., and Yonemura, S. (2006). Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp Cell Res 312, 1637–1650.

    PubMed  CAS  Google Scholar 

  • Mooseker, M. S. (1985). Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Ann Rev Cell Biol 1, 209–241.

    PubMed  CAS  Google Scholar 

  • Murthy, K., and Wadsworth, P. (2005). Myosin-II-dependent localization and dynamics of F-actin during cytokinesis. Curr Biol 15, 724–731.

    PubMed  CAS  Google Scholar 

  • Nakasawa, T., Takahashi, M., Matsuzawa, F., Aikawa, S., Togashi, Y., Saitoh, T., Yamagishi, A., and Yazawa, M. (2005). Critical regions for assembly of vertebrate nonmuscle myosin II. Biochemistry 44, 174–183.

    PubMed  CAS  Google Scholar 

  • Niederman, R., and Pollard, T. D. (1975). Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J Cell Biol 67, 72–92.

    PubMed  CAS  Google Scholar 

  • Nikolaidou, K. K., and Barrett, K. (2004). A Rho GTPase signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation. Curr Biol 14, 1822–1826.

    PubMed  CAS  Google Scholar 

  • Nikolaou, S., Hu, M., Chilton, N. B., Hartman, D., Nisbet, A. J., Presidente, P. J., and Gasser, R. B. (2006). Class II myosins in nematodes—genetic relationships, fundamental and applied implications. Biotechnol Adv 24, 338–350.

    PubMed  CAS  Google Scholar 

  • Nishikawa, M., Sellers, J. R., Adelstein, R. S., and Hidaka, H. (1984). Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem 259, 8808–8814.

    PubMed  CAS  Google Scholar 

  • Noren, N. K., Niessen, C. M., Gumbiner, B. M., and Burridge, K. (2001). Cadherin engagement regulates Rho family GTPases. J Biol Chem 276, 33305–33308.

    PubMed  CAS  Google Scholar 

  • Okamoto, R., Ito, M., Suzuki, N., Kongo, M., Moriki, N., Saito, H., Tsumura, H., Imanaka-Yoshida, K., Kimura, K., Mizoguchi, A. and others. (2005). The targeted disruption of the MYPT1 gene results in embryonic lethality. Transgenic Res 14, 337–340.

    PubMed  CAS  Google Scholar 

  • Pato, M. D., Sellers, J. R., Preston, Y. A., Harvey, E. V., and Adelstein, R. S. (1996). Baculovirus expression of chicken nonmuscle heavy meromyosin II-B: Characterization of alternatively spliced isoforms. J Biol Chem 271, 2689–2695.

    PubMed  CAS  Google Scholar 

  • Peralta, X. G., Toyama, Y., Hutson, M. S., Montague, R., Venakides, S., Kiehart, D. P., and Edwards, G. S. (2007). Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development. Biophys J 92, 2583–2596.

    PubMed  CAS  Google Scholar 

  • Piekny, A., Werner, M., and Glotzer, M. (2005). Cytokinesis: welcome to the Rho zone. Trends Cell Biol 15, 651–658.

    PubMed  CAS  Google Scholar 

  • Pollard, T. D., and Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465.

    PubMed  CAS  Google Scholar 

  • Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M., and Danuser, G. (2004). Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786.

    PubMed  CAS  Google Scholar 

  • Poperechnaya, A., Varlamova, O., Lin, P.-j., Stull, J. T., and Bresnick, A. R. (2000). Localization and activity of myosin light chain kinase isoforms during the cell cycle. J Cell Biol 151, 697–707.

    PubMed  CAS  Google Scholar 

  • Raftopoulou, M., and Hall, A. (2004). Cell migration: Rho GTPases lead the way. Dev Biol $265, $23–32.

    Google Scholar 

  • Ramamurthy, B., Yengo, C. M., Straight, A. F., Mitchison, T. J., and Sweeney, H. L. (2004). Kinetic mechanism of blebbistatin inhibition of nonmuscle myosin IIb. Biochemistry 43, 14832–14839.

    PubMed  CAS  Google Scholar 

  • Ratan, R. R., Maxfield, F. R., and Shelanski, M. L. (1988). Long-lasting and rapid calcium changes during mitosis. J Cell Biol 107, 993–999.

    PubMed  CAS  Google Scholar 

  • Redowicz, M. J. (2001). Regulation of nonmuscle myosins by heavy chain phosphorylation. J Muscle Res Cell Motil 22, 163–173.

    PubMed  CAS  Google Scholar 

  • Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R. (2003). Cell migration: Integrating signals from front to back. Science 302, 1704–1709.

    PubMed  CAS  Google Scholar 

  • Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C., and Vale, R. D. (2004). Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr Biol 14, 1827–1833.

    PubMed  CAS  Google Scholar 

  • Rosenberg, M., and Ravid, S. (2006). Protein kinase CUPγ regulates myosin IIB phosphorylation, cellular localization, and filament assembly. Mol Biol Cell 17, 1364–1374.

    PubMed  CAS  Google Scholar 

  • Rosenblatt, J., Cramer, L. P., Baum, B., and McGee, K. M. (2004). Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117, 361–372.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, S. S., Xing, J., Chen, L. Q., and Sweeney, H. L. (2003). Myosin IIb is unconventionally conventional. J Biol Chem 278, 27449–27455.

    PubMed  CAS  Google Scholar 

  • Russo, J. M., Florian, P., Shen, L., Graham, W. V., Tretiakova, M. S., Gitter, A. H., Mrsny, R. J., and Turner, J. R. (2005). Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure. Gastroenterology 128, 987–1001.

    PubMed  CAS  Google Scholar 

  • Sahai, E., and Marshall, C. J. (2002). ROC and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol 4, 408–415.

    PubMed  CAS  Google Scholar 

  • Sanders, L. C., Matsumura, F., Bokoch, G. M., and de Lanerolle, P. (1999). Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083–2085.

    PubMed  CAS  Google Scholar 

  • Sandquist, J. C., Swenson, K. I., DeMali, K. A., Burridge, K., and Means, A. R. (2006). Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration. J Biol Chem 281, 35873–35883.

    PubMed  CAS  Google Scholar 

  • Sato, M. K., Takahashi, M., and Yazawa, M. (2007). Two regions of the tail are necessary for the isoform-specific functions of nonmuscle myosin IIB. Mol Biol Cell 18, 1009–1017.

    PubMed  CAS  Google Scholar 

  • Sellers, J. R. (1985). Mechanism of the phosphorylation-dependent regulation of smooth muscle heavy meromyosin. J Biol Chem 260, 15815–15819.

    PubMed  CAS  Google Scholar 

  • Sellers, J. R., Eisenberg, E., and Adelstein, R. S. (1982). The binding of smooth muscle heavy meromyosin to actin in the presence of ATP. J Biol Chem 257, 13880–13883.

    PubMed  CAS  Google Scholar 

  • Sellers, J. R., Soboeiro, M. S., Faust, K., Bengur, A. R., and Harvey, E. V. (1988). Preparation and characterization of heavy meromyosin and subfrargment 1 from vertebrate cytoplasmic myosins. Biochemistry 27, 6977–6982.

    PubMed  CAS  Google Scholar 

  • Seri, M., Pecci, A., Di Bari, F., Cusano, R., Savino, M., Panza, E., Nigro, A., Noris, P., Gangarossa, S., Rocca, B. and others. (2003). MYH9-related disease: May-Hegglin anomaly, Sebastian Syndrome, Fechtner Syndrome, and Epstein Syndrome are not distinct entities but represent a variable expression of a single illness. Medicine 82, 203–215.

    PubMed  Google Scholar 

  • Shen, L., Black, E. D., Witkowski, E. D., Lencer, W. I., Guerriero, V., Schneeberger, E. E., and Turner, J. R. (2006). Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 119, 2095–2106.

    PubMed  CAS  Google Scholar 

  • Shewan, A. M., Maddugoda, M., Kraemer, A., Stehbens, S. J., Verma, S., Kovacs, E. M., and Yap, A. S. (2005). Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol Biol Cell 16, 4531–4542.

    PubMed  CAS  Google Scholar 

  • Shimizu, Y., Thumkeo, D., Keel, J., Ishizaki, T., Oshima, H., Oshima, M., Noda, Y., Matsumura, F., Taketo, M. M., and Narumiya, S. (2005). ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol 168, 941–953.

    PubMed  CAS  Google Scholar 

  • Shu, S., Liu, X., and Korn, E. D. (2005). Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium. Proc Natl Acad Sci USA 102, 1472–1477.

    PubMed  CAS  Google Scholar 

  • Simons, M., Wang, M., McBride, O. W., Kawamoto, S., Yamakawa, K., Gdula, D., Adelstein, R. S., and Weir, L. (1991). Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ Res 69, 530–539.

    PubMed  CAS  Google Scholar 

  • Skop, A. R., Liu, H., Yates III, J., Meyer, B. J., and Heald, R. (2004). Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305, 61–66.

    PubMed  CAS  Google Scholar 

  • Sobieszek, A., and Small, J. V. (1976). Myosin-linked calcium regulation in vertebrate smooth muscle. J Mol Biol 101, 75–92.

    Google Scholar 

  • Somlyo, A. P., and Somlyo, A. V. (2003). Ca$2 + $ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83, 1325–1358.

    PubMed  CAS  Google Scholar 

  • Somlyo, A.V., Bradshaw, D., Ramos, S., Murphy, C., Myers, C. E., and Somlyo, A. P. (2000). Rho- kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun 269, 652–659.

    PubMed  CAS  Google Scholar 

  • Somlyo, A. V., Wang, H., Choudhury, N., Khromov, A. S., Majesky, M., Owens, G. K., and Somlyo, A. P. (2004). Myosin light chain kinase knockout. J Muscle Res Cell Motil 25, 241–242.

    PubMed  CAS  Google Scholar 

  • Sonnichsen, B., Koski, L. B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A.-M., Artelt, J., Bettencourt, P., Cassin, E. and others. (2005). Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462–469.

    PubMed  CAS  Google Scholar 

  • Srinivas, S. P., Satpathy, M., Guo, Y., and Anandan, V. (2006). Histamine-induced phosphorylation of the regulatory light chain of myosin II disrupts the barrier integrity of corneal endothelial cells. Invest Ophthal Vis Sci 47, 4011–4018.

    PubMed  Google Scholar 

  • Straight, A. F., Cheung, A., Limouze, J., Chen, I., Westwood, N. J., Sellers, J. R., and Mitchison, T. J. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–1747.

    PubMed  CAS  Google Scholar 

  • Straight, A. F., Field, C. M., and Mitchison, T. J. (2005). Anillin binds nonmuscle myosin II and regulates the contractile ring. Mol Biol Cell 16, 193–201.

    PubMed  CAS  Google Scholar 

  • Straussman, R., Ben-Ya’acov, A., Woolfson, D. N., and Ravid, S. (2007). Kinking the coiled coil –negatively charged residues at the coiled-coil interface. J Mol Biol 366, 1232–1242.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., Kawamoto, S., and Adelstein, R. S. (1992). Evidence for inserted sequences in the head region of nonmuscle myosin specific to the nervous system. Cloning of the cDNA encoding the myosin heavy chain-B isoform of vertebrate nonmuscle myosin. J Biol Chem 267, 17864–17871.

    PubMed  CAS  Google Scholar 

  • Takeda, K., Yu, Z.-X., Qian, S., Chin, T. K., Adelstein, R. S., and Ferrans, V. J. (2000). Nonmuscle myosin II localizes to the Z-lines and intercalated discs of cardiac muscle and to the Z-lines of skeletal muscle. Cell Motil Cytoskel 46, 59–68.

    CAS  Google Scholar 

  • Takeda, K., Kishi, H., Ma, X., Yu, Z.-X., and Adelstein, R. S. (2003). Ablation and mutation of nonmuscle myosin heavy chain II-B results in a defect in cardiac myocyte cytokinesis. Circ Res 93, 330–337.

    PubMed  CAS  Google Scholar 

  • Tama, F., Feig, M., Liu, J., Brooks, C. L. III, and Taylor, K. A. (2005). The requirement for mechanical coupling between head and S2 domains in smooth muscle myosin ATPase regulation and its implications for dimeric motor function. J Mol Biol 345, 837–854.

    PubMed  CAS  Google Scholar 

  • Tamada, M., Perez, T. D., Nelson, W. J., and Sheetz, M. P. (2007). Two distinct modes of myosin assembly and dynamics during epithelial wound closure. J Cell Biol 176, 27–33.

    PubMed  CAS  Google Scholar 

  • Tatsumoto, T., Xie, X., Blumenthal, R., Okamoto, I., and Miki, T. (1999). Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J. Cell Biol 147, 921–927.

    PubMed  CAS  Google Scholar 

  • Thumkeo, D., Keel, J., Ishizaki, T., Hirose, M., Nonomura, K., Oshima, H., Oshima, M., Taketo, M. M., and Narumiya, S. (2003). Targeted disruption of the mouse Rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol 23, 5043–5055.

    PubMed  CAS  Google Scholar 

  • Tombes, R. M., and Borisy, G. G. (1989). Intracellular free calcium and mitosis in mammalian cells: Anaphase onset is calcium modulated, but is not triggered by a brief transient. J Cell Biol 109, 627–636.

    PubMed  CAS  Google Scholar 

  • Totsukawa, G., Yamakita, Y., Yamashiro, S., Hosoya, H., Hartshorne, D. J., and Matsumura, F. (1999). Activation of myosin phosphatase targeting subunit by mitosis-specific phosphorylation. J Cell Biol 144, 735–744.

    PubMed  CAS  Google Scholar 

  • Totsukawa, G., Wu, Y., Sasaki, Y., Hartshorne, D. J., Yamakita, Y., Yamashiro, S., and Matsumura, F. (2004). Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164, 427–439.

    PubMed  CAS  Google Scholar 

  • Trybus, K. M., and Lowey, S. (1984). Conformational states of smooth muscle myosin: Effects of light chain phosphorylation and ionic strength. J Biol Chem 259, 8564–8571.

    PubMed  CAS  Google Scholar 

  • Tullio, A. N., Accili, D., Ferrans, V. J., Yu, Z.-X., Takeda, K., Grinberg, A., Westphal, H., Preston, Y. A., and Adelstein, R. S. (1997). Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc Natl Acad Sci USA 94, 12407–12412.

    PubMed  CAS  Google Scholar 

  • Tullio, A. N., Bridgman, P. C., Tresser, N. J., Chan, C.-C., Conti, M. A., Adelstein, R. S., and Hara, Y. (2001). Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin II-B heavy chain. J Comp Neurol 433, 62–74.

    PubMed  CAS  Google Scholar 

  • Turbedsky, K., Pollard, T. D., and Bresnick, A. R. (1997). A subset of protein kinase C phosphorylation sites on the myosin II regulatory light chain inhibits phosphorylation by myosin light chain kinase. Biochemistry 36, 2063–2067.

    PubMed  CAS  Google Scholar 

  • Turner, J. R. (2006). Molecular basis of epithelial barrier regulation: From basic mechanisms to clinical application. Am J Pathol 169, 1901–1909.

    PubMed  CAS  Google Scholar 

  • Umemoto, S., Bengur, A. R., and Sellers, J. R. (1989). Effect of multiple phosphorylations of smooth muscle and cytoplasmic myosins on movement in an in vitro motility assay. J Biol Chem 264, 1431–1436.

    PubMed  CAS  Google Scholar 

  • Uren, D., Hwang, H.-K., Hara, Y., Takeda, K., Kawamoto, S., Tullio, A. N., Yu, Z.-X., Ferrans, V. J., Tresser, N., Grinberg, A. and others. (2000). Gene dosage affects the cardiac and brain phenotype in nonmuscle myosin II-B-depleted mice. J Clin Invest 105, 663–671.

    PubMed  CAS  Google Scholar 

  • Vaezi, A., Bauer, C., Vasioukhin, V., and Fuchs, E. (2002). Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev Cell 3, 367–381.

    PubMed  CAS  Google Scholar 

  • Vasioukhin, V., Bauer, C., Yin, M., and Fuchs, E. (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100, 209–219.

    PubMed  CAS  Google Scholar 

  • Velasco, G., Armstrong, C., Morrice, N., Frame, S., and Cohen, P. (2002). Phosphorylation of the regulatory subunit of smooth muscle protein phosphatase 1M at Thr850 induces its dissociation from myosin. FEBS Lett 527, 101–104.

    PubMed  CAS  Google Scholar 

  • Verkhovsky, A. B., Svitkina, T. M., and Borisy, G. G. (1995). Myosin II filament assemblies in the active lamella of fibroblasts: Their morphogenesis and role in the formation of actin filament bundles. J Cell Biol 131, 989–1002.

    PubMed  CAS  Google Scholar 

  • Wang, F., Graham, W. V., Wang, Y., Witkowski, E. D., Schwarz, B. T., and Turner, J. R. (2005). Interferon-$\UPgamma $ and tumor necrosis factor-$\UPalpha $ synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166, 409–419.

    PubMed  CAS  Google Scholar 

  • Wang, F., Kovacs, M., Hu, A., Limouze, J., Harvey, E. V., and Sellers, J. R. (2003). Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance. J Biol Chem 278, 27439–27448.

    PubMed  CAS  Google Scholar 

  • Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., and Horwitz, A. F. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6, 154–161.

    PubMed  CAS  Google Scholar 

  • Webb, S. E., Lee, K. W., Karplus, E., and Miller, A. L. (1997). Localized calcium transients accompany furrow positioning, propagation, and deepening during the early cleavage period of zebrafish embryos. Dev Biol 192, 78–92.

    PubMed  CAS  Google Scholar 

  • Weis, W. I., and Nelson, W. J. (2006). Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 281, 35593–35597.

    PubMed  CAS  Google Scholar 

  • Wendt, T., Taylor, D., Trybus, K. M., and Taylor, K. (2001). Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci USA 98, 4361–4366.

    PubMed  CAS  Google Scholar 

  • Woodhead, J. L., Zhao, F. Q., Craig, R., Egelman, E. H., Alamo, L., and Padron, R. (2005). Atomic model of a myosin filament in the relaxed state. Nature 436, 1195–1199.

    PubMed  CAS  Google Scholar 

  • Worthylake, R. A., Lemoine, S., Watson, J. M., and Burridge, K. (2001). RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154, 147–160.

    PubMed  CAS  Google Scholar 

  • Wu, D., Asiedu, M., Adelstein, R. S., and Wei, Q. (2006). A novel guanine nucleotide exchange factor MyoGEF is required for cytokinesis. Cell Cycle 5, 1234–1239.

    PubMed  CAS  Google Scholar 

  • Wylie, S. R., and Chantler, P. D. (2003). Myosin IIA drives neurite retraction. Mol Biol Cell $14, $4654–4666.

    Google Scholar 

  • Wylie, S. R., Wu, P.-J., Patel, H., and Chantler, P. D. (1998). A conventional myosin motor drives neurite outgrowth. Proc Natl Acad Sci USA 95, 12967–12972.

    PubMed  CAS  Google Scholar 

  • Xia, D., Stull, J. T., and Kamm, K. E. (2005). Myosin phosphatase targeting subunit 1 affects cell migration by regulating myosin phosphorylation and actin assembly. Exp Cell Res 304, 506–517.

    PubMed  CAS  Google Scholar 

  • Xu, J., Wang, F., Van Keymeulen, A., Herzmark, P., Straight, A., Kelly, K., Takuwa, Y., Sugimoto, N., Mitchison, T., and Bourne, H. R. (2003). Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214.

    PubMed  CAS  Google Scholar 

  • Yamada, S., Pokutta, S., Drees, F., Weis, W. I., and Nelson, W. J. (2005). Deconstructing the cadherin-catenin-actin complex. Cell 123, 889–901.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, H., Wyckoff, J., and Condeelis, J. (2005). Cell migration in tumors. Curr Opin Cell Biol 17, 559–564.

    PubMed  CAS  Google Scholar 

  • Yamakita, Y., Yamashiro, S., and Matsumura, F. (1994). In vivo phosphorylation of regulatory light chain of myosin II during mitosis of cultured cells. J Cell Biol 124, 129–137.

    PubMed  CAS  Google Scholar 

  • Yamashiro, S., Totsukawa, G., Yamakita, Y., Sasaki, Y., Madaule, P., Ishizaki, T., Narumiya, S., and Matsumura, F. (2003). Citron kinase, a Rho-dependent kinase, induces di-phosphorylation of regulatory light chain of myosin II. Mol Biol Cell 14, 1745–1756.

    PubMed  CAS  Google Scholar 

  • Yap, A. S., and Kovacs, E. M. (2003). Direct cadherin-activated cell signaling: a view from the plasma membrane. J Cell Biol 160, 11–16.

    PubMed  CAS  Google Scholar 

  • Yokoyama, T., Goto, H., Izawa, I., Mizutani, H., and Inagaki, M. (2005). Aurora-B and Rho- kinase/ROCK, the two cleavage furrow kinases, independently regulate the progression of cytokinesis: possible existence of a novel cleavage furrow kinase phosphorylates ezrin/radixin, moesin (ERM). Genes to Cells 10, 127–137.

    PubMed  CAS  Google Scholar 

  • Yoshizaki, H., Ohba, Y., Kurokawa, K., Itoh, R. E., Nakamura, T., Mochizuki, N., Nagashima, K., and Matsuda, M. (2003). Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 162, 223–232.

    PubMed  CAS  Google Scholar 

  • Yoshizaki, H., Ohba, Y., Parrini, M.-C., Dulyaninova, N. G., Bresnick, A. R., Mochizuki, N., and Matsuda, M. (2004). Cell type-specific regulation of RhoA activity during cytokinesis. J Biol Chem 279, 44756–44762.

    PubMed  CAS  Google Scholar 

  • Young, P. E., Richman, A. M., Ketchum, A. S., and Kiehart, D. P. (1993). Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev 7, 29–41.

    PubMed  CAS  Google Scholar 

  • Yuce, O., Piekny, A., and Glotzer, M. (2005). An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol 170, 571–582.

    PubMed  Google Scholar 

  • Yumura, S., and Uyeda, T. Q., (2003). Myosins and cell dynamics in cellular slime molds. Int Rev Cytol 224, 173–225.

    PubMed  CAS  Google Scholar 

  • Zallen, J. A., and Wieschaus, E. (2004). Patterned gene expression directs bipolar planar polarity in Drosophila. Dev Cell 6, 343–355.

    PubMed  CAS  Google Scholar 

  • Zhang, X.-F., Schaefer, A. W., Burnette, D. T., Schoonderwoert, V. T., and Forscher, P. (2003). Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron 40, 931–944.

    PubMed  CAS  Google Scholar 

  • Zhao, Z.-s., and Manser, E. (2005). PAK and other Rho-associated kinases – effectors with surprisingly diverse mechanisms of regulation. Biochem J 386, 201–214.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Conti, M.A., Kawamoto, S., Adelstein, R.S. (2008). Non-Muscle Myosin II. In: Myosins. Proteins and Cell Regulation, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6519-4_7

Download citation

Publish with us

Policies and ethics