Skip to main content

Myosin VI: A Multifunctional Motor Protein

  • Chapter
Book cover Myosins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 7))

Abstract

Myosins are motor proteins that use the energy derived from ATP hydrolysis to move unidirectionally along actin filament tracks within the cell. Myosin VI appears to be unique, because unlike all the other myosins so far characterised, it moves backwards towards the minus end of actin filaments. Within cells myosin VI is found in distinct locations and has been implicated in a wide range of processes such as endocytosis, exocytosis, maintenance of Golgi morphology and cell migration. Myosin VI’s participation in this diverse array of cellular events is mediated by its interaction with a number of different binding partners, which bind to two specific sites in its C-terminal targeting domain. Within this domain there is also a site which specifically binds the signalling molecule PtdIns(4,5) P2 (PIP2) and modulates myosin VI targeting to the plasma membrane. Although it is now generally agreed that myosin VI exists in vitro as a stable monomer and under certain conditions may form a few dimers, it is not known whether myosin VI functions as a monomer and/or dimer in the cell. Understanding the cellular functions of myosin VI has now a greater urgency with the observations that myosin VI is associated with a number of human diseases including deafness and cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, Z.M., R.J. Morell, S. Riazuddin, A. Gropman, S. Shaukat, M.M. Ahmad, S.A. Mohiddin, L. Fananapazir, R.C. Caruso, T. Husnain, S.N. Khan, A.J. Griffith, T.B. Friedman, and E.R. Wilcox. (2003). Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet. 72, 1315–22.

    Article  PubMed  CAS  Google Scholar 

  • Altman, D., H.L. Sweeney, and J.A. Spudich. (2004). The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116, 737–49.

    Article  PubMed  CAS  Google Scholar 

  • Ang, A.L., T. Taguchi, S. Francis, H. Folsch, L.J. Murrells, M. Pypaert, G. Warren, and I. Mellman. (2004). Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 167, 531–43.

    Article  PubMed  CAS  Google Scholar 

  • Aschenbrenner, L., T. Lee, and T. Hasson. (2003).. Myo6 facilitates the translocation of endocytic vesicles from cell peripheries. Mol Biol Cell. 14, 2728–43.

    Google Scholar 

  • Au, J., C. Puri, G. Ihrke, J. Kendrick-Jones, and F. Buss. (2007). Myosin VI is required for sorting of AP-1B dependent cargo to the basolateral domainin polarised MDCK cells. Journal of Cell Biology. In press.

    Google Scholar 

  • Avraham, K.B., T. Hasson, K.P. Steel, D.M. Kingsley, L.B. Russell, M.S. Mooseker, N.G. Copeland, and N.A. Jenkins. (1995). The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet. 11, 369–75.

    Article  PubMed  CAS  Google Scholar 

  • Bahloul, A., G. Chevreux, A.L. Wells, D. Martin, J. Nolt, Z. Yang, L.Q. Chen, N. Potier, A. Van Dorsselaer, S. Rosenfeld, A. Houdusse, and H.L. Sweeney. (2004). The unique insert in myosin VI is a structural calcium–calmodulin binding site. Proc Natl Acad Sci U S A. 101, 4787–92.

    Google Scholar 

  • Bement, W.M., and M.S. Mooseker. (1995). TEDS rule: a molecular rationale for differential regulation of myosins by phosphorylation of the heavy chain head. Cell Motil Cytoskeleton 31, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J.S., B.C. Powell, and R.E. Cheney. (2001). A millennial myosin census. Mol Biol Cell 12, 780–94.

    PubMed  CAS  Google Scholar 

  • Biemesderfer, D., S.A. Mentone, M. Mooseker, and T. Hasson. (2002). Expression of myosin VI within the early endocytic pathway in adult and developing proximal tubules. Am J Physiol Renal Physiol 282, F785–94.

    Google Scholar 

  • Borisy, G.G., and T.M. Svitkina. (2000). Actin machinery: pushing the envelope. Curr Opin Cell Biol 12, 104–12.

    Article  PubMed  CAS  Google Scholar 

  • Breckler, J., K. Au, J. Cheng, T. Hasson, and B. Burnside. (2000). Novel myosin VI isoform is abundantly expressed in retina. Exp Eye Res $70,$ 121–34.

    Google Scholar 

  • Brett, T.J., L.M. Traub, and D.H. Fremont. (2002). Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10, 797–809.

    Article  PubMed  CAS  Google Scholar 

  • Brodsky, F.M., C.Y. Chen, C. Knuehl, M.C. Towler, and D.E. Wakeham. (2001). Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17, 517–68.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S.S. (1997). Myosins in yeast. Curr Opin Cell Biol. 9, 44–8.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S.S. (1999). Cooperation between microtubule- and actin-based motor proteins. Annu Rev Cell Dev Biol 15, 63–80.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, Z., D. Altman, and J.A. Spudich. (2007). The power stroke of myosin VI and the basis of reverse directionality. Proc Natl Acad Sci U S A 104, 772–7.

    Article  PubMed  CAS  Google Scholar 

  • Brzeska, H., U.G. Knaus, Z.Y. Wang, G.M. Bokoch, and E.D. Korn. (1997). p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba myosin I. Proc Natl Acad Sci U S A 94, 1092–5.

    Article  PubMed  CAS  Google Scholar 

  • Bunn, R.C., M.A. Jensen, and B.C. Reed. (1999). Protein interactions with the glucose transporter binding protein GLUT1CBP that provide a link between GLUT1 and the cytoskeleton. Mol Biol Cell 10, 819–32.

    PubMed  CAS  Google Scholar 

  • Buss, F., S.D. Arden, M. Lindsay, J.P. Luzio, and J. Kendrick-Jones. (2001a). Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. Embo J. 20, 3676–84.

    Article  CAS  Google Scholar 

  • Buss, F., J. Kendrick-Jones, C. Lionne, A.E. Knight, G.P. Cote, and J. Paul Luzio. (1998). The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J Cell Biol 143, 1535–45.

    Article  PubMed  CAS  Google Scholar 

  • Buss, F., J.P. Luzio, and J. Kendrick-Jones. (2001b). Myosin VI, a new force in clathrin mediated endocytosis. FEBS Lett. 508, 295–9.

    Article  CAS  Google Scholar 

  • Buss, F., G. Spudich, and J. Kendrick-Jones. (2004). Myosin VI: cellular fuctions and motor properties. Annual Reviews in Cell and Developmental Biology 20, 649–76.

    Article  CAS  Google Scholar 

  • Cheng, K.W., J.P. Lahad, W.L. Kuo, A. Lapuk, K. Yamada, N. Auersperg, J. Liu, K. Smith-McCune, K.H. Lu, D. Fishman, J.W. Gray, and G.B. Mills. (2004). The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 10, 1251–6.

    Article  PubMed  CAS  Google Scholar 

  • Combet, C., C. Blanchet, C. Geourjon, and G. Deleage. (2000). NPS@: network protein sequence analysis. Trends Biochem Sci 25, 147–50.

    Article  PubMed  CAS  Google Scholar 

  • Cope, M.J., J. Whisstock, I. Rayment, and J. Kendrick-Jones. (1996). Conservation within the myosin motor domain: implications for structure and function. Structure 4, 969–87.

    Article  PubMed  CAS  Google Scholar 

  • Coureux, P.D., H.L. Sweeney, and A. Houdusse. (2004). Three myosin V structures delineate essential features of chemo-mechanical transduction. Embo J 23, 4527–37.

    Article  PubMed  CAS  Google Scholar 

  • Craig, R., R. Smith, and J. Kendrick-Jones. (1983). Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 302, 436–9.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, L.P. (1999). Organization and polarity of actin filament networks in cells: implications for the mechanism of myosin-based cell motility. Biochem Soc Symp 65, 173–205.

    PubMed  CAS  Google Scholar 

  • Cremona, O., and P. De Camilli. 2001. Phosphoinositides in membrane traffic at the synapse. J Cell Sci 114, 1041–52.

    Google Scholar 

  • Czech, M.P. (2000). PIP2 and PIP3: complex roles at the cell surface. Cell 100, 603–6.

    Article  PubMed  CAS  Google Scholar 

  • Dance, A.L., M. Miller, S. Seragaki, P. Aryal, B. White, L. Aschenbrenner, and T. Hasson. (2004). Regulation of myosin-VI targeting to endocytic compartments. Traffic 5, 798–813.

    Article  PubMed  CAS  Google Scholar 

  • De La Cruz, E.M., E.M. Ostap, and H.L. Sweeney. (2001). Kinetic mechanism and regulation of myosin VI. J Biol Chem 276, 32373–81.

    Google Scholar 

  • Defacque, H., M. Egeberg, A. Habermann, M. Diakonova, C. Roy, P. Mangeat, W. Voelter, G. Marriott, J. Pfannstiel, H. Faulstich, and G. Griffiths. (2000). Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes. Embo J 19, 199–212.

    Article  PubMed  CAS  Google Scholar 

  • Dell’Angelica, E.C. (2001). Clathrin-binding proteins: got a motif? Join the network! Trends Cell Biol 11, 315–8.

    Google Scholar 

  • DeMali, K.A., C.A. Barlow, and K. Burridge. (2002). Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 159, 881–91.

    Google Scholar 

  • DeMali, K.A., and K. Burridge. (2003). Coupling membrane protrusion and cell adhesion. J Cell Sci 116, 2389–97.

    Google Scholar 

  • Deng, W., K. Leaper, and M. Bownes. (1999). A targeted gene silencing technique shows that Drosophila myosin VI is required for egg chamber and imaginal disc morphogenesis. J Cell Sci 112 ( Pt 21), 3677–90.

    Google Scholar 

  • Deol, M., and M. Green. (1966). Snell’s Waltzer, a new mutation affecting behaviour and the inner ear of the mouse. Genet Res 8, 339–45.

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo, G., and P. De Camilli. (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–7.

    Google Scholar 

  • DiFiglia, M., E. Sapp, K. Chase, C. Schwarz, A. Meloni, C. Young, E. Martin, J.P. Vonsattel, R. Carraway, S.A. Reeves, and et al. (1995). Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–81.

    Article  PubMed  CAS  Google Scholar 

  • Dominik, M., W. Klopocka, P. Pomorski, E. Kocik, and M.J. Redowicz. (2005). Characterization of Amoeba proteus myosin VI immunoanalog. Cell Motil Cytoskeleton 61, 172–88.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, T.A., S. Chen, D.A. Faith, J.L. Hicks, E.A. Platz, Y. Chen, C.M. Ewing, J. Sauvageot, W.B. Isaacs, A.M. De Marzo, and J. Luo. (2006). A novel role of myosin VI in human prostate cancer. Am J Pathol 169, 1843–54.

    Article  PubMed  CAS  Google Scholar 

  • Engelender, S., A.H. Sharp, V. Colomer, M.K. Tokito, A. Lanahan, P. Worley, E.L. Holzbaur, and C.A. Ross. (1997). Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum Mol Genet 6, 2205–12.

    Article  PubMed  CAS  Google Scholar 

  • Engqvist-Goldstein, A.E., R.A. Warren, M.M. Kessels, J.H. Keen, J. Heuser, and D.G. Drubin. (2001). The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J Cell Biol 154, 1209–23.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P.R., and D.J. Owen. (2002). Endocytosis and vesicle trafficking. Curr Opin Struct Biol 12, 814–21.

    Article  PubMed  CAS  Google Scholar 

  • Faber, P.W., G.T. Barnes, J. Srinidhi, J. Chen, J.F. Gusella, and M.E. MacDonald. (1998). Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7, 1463–74.

    Article  PubMed  CAS  Google Scholar 

  • Foth, B.J., M.C. Goedecke, and D. Soldati. (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103, 3681–6.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, A., and Y. Kurachi. (2000). SAP family proteins. Biochem Biophys Res Commun 269, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Fulop, V., C.V. Colitti, D. Genest, R.S. Berkowitz, G.K. Yiu, S.W. Ng, J. Szepesi, and S.C. Mok. (1998). DOC-2/hDab2, a candidate tumor suppressor gene involved in the development of gestational trophoblastic diseases. Oncogene 17, 419–24.

    Article  PubMed  CAS  Google Scholar 

  • Geisbrecht, E.R., and D.J. Montell. (2002). Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 4, 616–20.

    PubMed  CAS  Google Scholar 

  • Gotthardt, M., M. Trommsdorff, M.F. Nevitt, J. Shelton, J.A. Richardson, W. Stockinger, J. Nimpf, and J. Herz. (2000). Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem 275, 25616–24.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, G., and K. Simons. (1986). The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234, 438–43.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, H., L.A., W. Chen, N.P. Martin, E.J. Whalen, R.T. Premont, and R.J. Lefkowitz. (2003). GIPC interacts with the beta1-adrenergic receptor and regulates beta1-adrenergic receptor-mediated ERK activation. J Biol Chem 278, 26295–301.

    Google Scholar 

  • Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509–14.

    Article  PubMed  CAS  Google Scholar 

  • Hasson, T., P.G. Gillespie, J.A. Garcia, R.B. MacDonald, Y. Zhao, A.G. Yee, M.S. Mooseker, and D.P. Corey. (1997). Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137, 1287–307.

    Article  PubMed  CAS  Google Scholar 

  • Hasson, T., and M.S. Mooseker. (1994). Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Cell Biol 127, 425–40.

    Article  PubMed  CAS  Google Scholar 

  • Hattula, K., and J. Peranen. (2000). FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. Curr Biol 10, 1603–6.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, J.L., W.M. Deng, A.D. Rogat, K.G. Miller, and M. Bownes. (1999). Class VI unconventional myosin is required for spermatogenesis in Drosophila. Mol Biol Cell 10, 4341–53.

    PubMed  CAS  Google Scholar 

  • Hirakawa, T., C. Galet, M. Kishi, and M. Ascoli. (2003). GIPC binds to the human lutropin receptor (hLHR) through an unusual PDZ domain binding motif, and it regulates the sorting of the internalized human choriogonadotropin and the density of cell surface hLHR. J Biol Chem 278, 49348–57.

    Article  PubMed  CAS  Google Scholar 

  • Hocevar, B.A., F. Mou, J.L. Rennolds, S.M. Morris, J.A. Cooper, and P.H. Howe. (2003). Regulation of the Wnt signaling pathway by disabled-2 (Dab2). Embo J 22, 3084–94.

    Article  PubMed  CAS  Google Scholar 

  • Hocevar, B.A., A. Smine, X.X. Xu, and P.H. Howe. (2001). The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. Embo J 20, 2789–801.

    Google Scholar 

  • Hodge, T., and M.J. Cope. (2000). A myosin family tree. J Cell Sci. 113 Pt 19, 3353–4.

    Google Scholar 

  • Huang, Y., H. Friess, J. Kleeff, I. Esposito, Z. Zhu, S. Liu, S.C. Mok, A. Zimmermann, and M.W. Buchler. (2001). Doc-2/hDab2 expression is up-regulated in primary pancreatic cancer but reduced in metastasis. Lab Invest 81, 863–73.

    PubMed  CAS  Google Scholar 

  • Huber, L.A., S. Pimplikar, R.G. Parton, H. Virta, M. Zerial, and K. Simons. (1993). Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J Cell Biol 123, 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Iwaki, M., H. Tanaka, A.H. Iwane, E. Katayama, M. Ikebe, and T. Yanagida. (2006). Cargo-binding makes a wild-type single-headed myosin-VI move processively. Biophys J. 90, 3643–52.

    Article  PubMed  CAS  Google Scholar 

  • Janmey, P.A., W. Xian, and L.A. Flanagan. (1999). Controlling cytoskeleton structure by phosphoinositide–protein interactions: phosphoinositide binding protein domains and effects of lipid packing. Chem Phys Lipids 101, 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Kalchman, M.A., H.B. Koide, K. McCutcheon, R.K. Graham, K. Nichol, K. Nishiyama, P. Kazemi-Esfarjani, F.C. Lynn, C. Wellington, M. Metzler, Y.P. Goldberg, I. Kanazawa, R.D. Gietz, and M.R. Hayden. (1997). HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet 16, 44–53.

    CAS  Google Scholar 

  • Kalthoff, C., J. Alves, C. Urbanke, R. Knorr, and E.J. Ungewickell. (2002). Unusual structural organization of the endocytic proteins AP180 and epsin 1. J Biol Chem 277, 8209–16.

    Article  PubMed  CAS  Google Scholar 

  • Kelleher, J.F., M.A. Mandell, G. Moulder, K.L. Hill, S.W. L’Hernault, R. Barstead, and M.A. Titus. (2000). Myosin VI is required for asymmetric segregation of cellular components during C. elegans spermatogenesis. Curr Biol 10, 1489–96.

    Article  CAS  Google Scholar 

  • Kellerman, K.A., and K.G. Miller. (1992). An unconventional myosin heavy chain gene from Drosophila melanogaster. J Cell Biol 119, 823–34.

    Article  PubMed  CAS  Google Scholar 

  • Klopfenstein, D.R., and R.D. Vale. (2004). The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol Biol Cell 15, 3729–39.

    Article  PubMed  CAS  Google Scholar 

  • Knight, P.J., K. Thirumurugan, Y. Xu, F. Wang, A.P. Kalverda, W.F. Stafford, 3rd, J.R. Sellers, and M. Peckham. (2005). The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J Biol Chem 280, 34702–8.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen, B. (2006). Migrating with myosin VI. Am J Pathol 169, 1523–6.

    Article  PubMed  CAS  Google Scholar 

  • Ladinsky, M.S., D.N. Mastronarde, J.R. McIntosh, K.E. Howell, and L.A. Staehelin. (1999). Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144, 1135–49.

    Article  PubMed  CAS  Google Scholar 

  • Langford, G.M. (1995). Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol 7, 82–8.

    Article  PubMed  CAS  Google Scholar 

  • Lantz, V.A., and K.G. Miller. (1998). A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J Cell Biol 140, 897–910.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, A.S., M.A. Davare, M.C. Horne, C.C. Garner, and J.W. Hell. (1998). SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J Biol Chem 273, 19518–24.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., J. Kang, and M.S. Horwitz. (1998). Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Mol Cell Biol 18, 1601–10.

    PubMed  CAS  Google Scholar 

  • Lister, I., S. Schmitz, M. Walker, J. Trinick, F. Buss, C. Veigel, and J. Kendrick-Jones. (2004). A monomeric myosin VI with a large working stroke. Embo J 23, 1729–38.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., D.W. Taylor, E.B. Krementsova, K.M. Trybus, and K.A. Taylor. (2006). Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 442, 208–11.

    PubMed  CAS  Google Scholar 

  • Lyu, P.C., P.J. Gans, and N.R. Kallenbach. (1992). Energetic contribution of solvent-exposed ion pairs to alpha-helix structure. J Mol Biol 223, 343–50.

    Article  PubMed  CAS  Google Scholar 

  • Melchionda, S., N. Ahituv, L. Bisceglia, T. Sobe, F. Glaser, R. Rabionet, M.L. Arbones, A. Notarangelo, E. Di Iorio, M. Carella, L. Zelante, X. Estivill, K.B. Avraham, and P. Gasparini. (2001). MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet 69, 635–40.

    Google Scholar 

  • Menetrey, J., A. Bahloul, A. L. Wells, C. M. Yengo, C. A. Morris, H. L. Sweeney, and A. Houdusse. (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, 779–785.

    Google Scholar 

  • Mermall, V., J.G. McNally, and K.G. Miller. (1994). Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature 369, 560–2.

    Article  PubMed  CAS  Google Scholar 

  • Mermall, V., and K.G. Miller. (1995). The 95F unconventional myosin is required for proper organization of the Drosophila syncytial blastoderm. J Cell Biol 129, 1575–88.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, S.K., P.A. Keyel, M.J. Hawryluk, N.R. Agostinelli, S.C. Watkins, and L.M. Traub. (2002). Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. Embo J 21, 4915–26.

    Article  PubMed  CAS  Google Scholar 

  • Mohiddin, S.A., Z.M. Ahmed, A.J. Griffith, D. Tripodi, T.B. Friedman, L. Fananapazir, and R.J. Morell. (2004). Novel association of hypertrophic cardiomyopathy, sensorineural deafness, and a mutation in unconventional myosin VI (MYO6). J Med Genet 41, 309–14.

    Article  PubMed  CAS  Google Scholar 

  • Mok, S.C., W.Y. Chan, K.K. Wong, K.K. Cheung, C.C. Lau, S.W. Ng, A. Baldini, C.V. Colitti, C.O. Rock, and R.S. Berkowitz. (1998). DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer. Oncogene 16, 2381–7.

    Article  PubMed  CAS  Google Scholar 

  • Moritz, O.L., B.M. Tam, L.L. Hurd, J. Peranen, D. Deretic, and D.S. Papermaster. (2001). Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol Biol Cell 12, 2341–51.

    PubMed  CAS  Google Scholar 

  • Morris, C.A., A.L. Wells, Z. Yang, L.Q. Chen, C.V. Baldacchino, and H.L. Sweeney. (2003). Calcium functionally uncouples the heads of myosin VI. J Biol Chem 278, 23324–30.

    Article  PubMed  CAS  Google Scholar 

  • Morris, S.M., S.D. Arden, R.C. Roberts, J. Kendrick-Jones, J.A. Cooper, J.P. Luzio, and F. Buss. (2002). Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 3, 331–41.

    Article  PubMed  CAS  Google Scholar 

  • Morris, S.M., and J.A. Cooper. (2001). Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2, 111–23.

    Article  PubMed  CAS  Google Scholar 

  • Mostov, K.E., M. Verges, and Y. Altschuler. (2000). Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol 12, 483–90.

    Article  PubMed  CAS  Google Scholar 

  • Muth, T.R., and M.J. Caplan. (2003). Transport protein trafficking in polarized cells. Annu Rev Cell Dev Biol 19, 333–66.

    Article  PubMed  CAS  Google Scholar 

  • Naccache, S.N., and T. Hasson. (2006). Myosin VI altered at threonine 406 stabilizes actin filaments in vivo. Cell Motil Cytoskeleton 63, 633–45.

    Article  PubMed  CAS  Google Scholar 

  • Naccache, S.N., T. Hasson, and A. Horowitz. (2006). Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles. Proc Natl Acad Sci U S A. 103, 12735–40.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, S., K. Homma, Y. Komori, M. Iwaki, T. Wazawa, A. Hikikoshi Iwane, J. Saito, R. Ikebe, E. Katayama, T. Yanagida, and M. Ikebe. (2002). Class VI myosin moves processively along actin filaments backward with large steps. Biochem Biophys Res Commun 290, 311–7.

    Google Scholar 

  • Noguchi, T., M. Lenartowska, and K.G. Miller. (2006). Myosin VI stabilizes an actin network during Drosophila spermatid individualization. Mol Biol Cell 17, 2559–71.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, B., M.J. Tyska, and M.S. Mooseker. (2007). Myosin at work: Motor adaptations for a variety of cellular functions. Biochim Biophys Acta 1773, 615–30.

    Article  PubMed  CAS  Google Scholar 

  • Okten, Z., L.S. Churchman, R.S. Rock, and J.A. Spudich. (2004). Myosin VI walks hand-over-hand along actin. Nat Struct Mol Biol 11, 884–7.

    Article  PubMed  CAS  Google Scholar 

  • Oleinikov, A.V., J. Zhao, and S.P. Makker. (2000). Cytosolic adaptor protein Dab2 is an intracellular ligand of endocytic receptor gp600/megalin. Biochem J 347 Pt 3, 613–21.

    Google Scholar 

  • Osterweil, E., D.G. Wells, and M.S. Mooseker. (2005). A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J Cell Biol 168, 329–38.

    Article  PubMed  CAS  Google Scholar 

  • Park, H., A. Li, L.Q. Chen, A. Houdusse, P.R. Selvin, and H.L. Sweeney. (2007). The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proc Natl Acad Sci U S A 104, 778–83.

    Article  PubMed  CAS  Google Scholar 

  • Park, H., B. Ramamurthy, M. Travaglia, D. Safer, L.Q. Chen, C. Franzini-Armstrong, P.R. Selvin, and H.L. Sweeney. (2006). Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol Cell 21, 331–6.

    Article  PubMed  CAS  Google Scholar 

  • Petritsch, C., G. Tavosanis, C.W. Turck, L.Y. Jan, and Y.N. Jan. (2003). The Drosophila myosin VI Jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev Cell 4, 273–81.

    Article  PubMed  CAS  Google Scholar 

  • Purcell, T.J., C. Morris, J.A. Spudich, and H.L. Sweeney. (2002). Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci U S A 99, 14159–64.

    Article  PubMed  CAS  Google Scholar 

  • Redowicz, M.J. (1999). Myosins and deafness. J Muscle Res Cell Motil 20, 241–8.

    Article  PubMed  CAS  Google Scholar 

  • Redowicz, M.J. (2002). Myosins and pathology: genetics and biology. Acta Biochim Pol 49, 789–804.

    PubMed  CAS  Google Scholar 

  • Reed, B.C., C. Cefalu, B.H. Bellaire, J.A. Cardelli, T. Louis, J. Salamon, M.A. Bloecher, and R.C. Bunn. (2005). GLUT1CBP(TIP2/GIPC1) interactions with GLUT1 and myosin VI: evidence supporting an adapter function for GLUT1CBP. Mol Biol Cell 16, 4183–201.

    Article  PubMed  CAS  Google Scholar 

  • Reuver, S.M., and C.C. Garner. (1998). E-cadherin mediated cell adhesion recruits SAP97 into the cortical cytoskeleton. J Cell Sci. 111 (Pt 8), 1071–80.

    Google Scholar 

  • Rezaie, T., A. Child, R. Hitchings, G. Brice, L. Miller, M. Coca-Prados, E. Heon, T. Krupin, R. Ritch, D. Kreutzer, R.P. Crick, and M. Sarfarazi. (2002). Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295, 1077–9.

    Article  PubMed  CAS  Google Scholar 

  • Robblee, J.P., A.O. Olivares, and E.M. de la Cruz. (2004). Mechanism of nucleotide binding to actomyosin VI: evidence for allosteric head–head communication. J Biol Chem 279, 38608–17.

    Google Scholar 

  • Rock, R.S., S.E. Rice, A.L. Wells, T.J. Purcell, J.A. Spudich, and H.L. Sweeney. (2001). Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A 98, 13655–9.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan, E., G. Kreitzer, and A. Musch. (2005). Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6, 233–47.

    Article  PubMed  CAS  Google Scholar 

  • Rogat, A.D., and K.G. Miller. (2002). A role for myosin VI in actin dynamics at sites of membrane remodeling during Drosophila spermatogenesis. J Cell Sci 115, 4855–65.

    Article  PubMed  CAS  Google Scholar 

  • Sahlender, D.A., R.C. Roberts, S.D. Arden, G. Spudich, M.J. Taylor, J.P. Luzio, J. Kendrick-Jones, and F. Buss. (2005). Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 169, 285–95.

    Article  PubMed  CAS  Google Scholar 

  • Sans, N., C. Racca, R.S. Petralia, Y.X. Wang, J. McCallum, and R.J. Wenthold. (2001). Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway. J Neurosci 21, 7506–16.

    PubMed  CAS  Google Scholar 

  • Sato, O., H.D. White, A. Inoue, B. Belknap, R. Ikebe, and M. Ikebe. (2004). Human deafness mutation of myosin VI (C442Y) accelerates the ADP dissociation rate. J Biol Chem 279, 28844–54.

    Article  PubMed  CAS  Google Scholar 

  • Schwamborn, K., R. Weil, G. Courtois, S.T. Whiteside, and A. Israel. (2000). Phorbol esters and cytokines regulate the expression of the NEMO-related protein, a molecule involved in a NF-kappa B-independent pathway. J Biol Chem 275, 22780–9.

    Article  PubMed  CAS  Google Scholar 

  • Self, T., T. Sobe, N.G. Copeland, N.A. Jenkins, K.B. Avraham, and K.P. Steel. (1999). Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 214, 331–41.

    Article  PubMed  CAS  Google Scholar 

  • Soldati, T., and M. Schliwa. (2006). Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7, 897–908.

    Article  PubMed  CAS  Google Scholar 

  • Spudich, G., M.V. Chibalina, J.S. Au, S.D. Arden, F. Buss, and J. Kendrick-Jones. (2007). Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P(2). Nat Cell Biol 9, 176–83.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, H.L., and A. Houdusse. (2007). What can myosin VI do in cells? Curr Opin Cell Biol 19, 57–66.

    Google Scholar 

  • Thirumurugan, K., T. Sakamoto, J.A. Hammer, 3rd, J.R. Sellers, and P.J. Knight. (2006). The cargo-binding domain regulates structure and activity of myosin 5. Nature 442, 212–5.

    Article  PubMed  CAS  Google Scholar 

  • Tsiavaliaris, G., S. Fujita-Becker, and D.J. Manstein. (2004). Molecular engineering of a backwards-moving myosin motor. Nature 427, 558–61.

    Article  PubMed  CAS  Google Scholar 

  • Uyeda, T.Q., P.D. Abramson, and J.A. Spudich. (1996). The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A 93, 4459–64.

    Article  PubMed  CAS  Google Scholar 

  • Vale, R.D. (2003). The molecular motor toolbox for intracellular transport. Cell 112, 467–80.

    Article  PubMed  CAS  Google Scholar 

  • Velier, J., M. Kim, C. Schwarz, T.W. Kim, E. Sapp, K. Chase, N. Aronin, and M. DiFiglia. (1998). Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp Neurol 152, 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F., K. Thirumurugan, W.F. Stafford, J.A. Hammer, 3rd, P.J. Knight, and J.R. Sellers. (2004). Regulated conformation of myosin V. J Biol Chem 279, 2333–6.

    Article  PubMed  CAS  Google Scholar 

  • Warner, C.L., A. Stewart, J.P. Luzio, K.P. Steel, R.T. Libby, J. Kendrick-Jones, and F. Buss. (2003). Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. Embo J 22, 569–79.

    Article  PubMed  CAS  Google Scholar 

  • Warshaw, D.M., W.H. Guilford, Y. Freyzon, E. Krementsova, K.A. Palmiter, M.J. Tyska, J.E. Baker, and K.M. Trybus. (2000). The light chain binding domain of expressed smooth muscle heavy meromyosin acts as a mechanical lever. J Biol Chem 275, 37167–72.

    Article  PubMed  CAS  Google Scholar 

  • Wells, A.L., A.W. Lin, L.Q. Chen, D. Safer, S.M. Cain, T. Hasson, B.O. Carragher, R.A. Milligan, and H.L. Sweeney. (1999). Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–8.

    Article  PubMed  CAS  Google Scholar 

  • Woods, D.F., and P.J. Bryant. (1991). The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451–64.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., J.E. Nash, P. Zamorano, and C.C. Garner. (2002). Interaction of SAP97 with minus-end-directed actin motor myosin VI. Implications for AMPA receptor trafficking. J Biol Chem 277, 30928–34.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., S.M. Reuver, S. Kuhlendahl, W.J. Chung, and C.C. Garner. (1998). Subcellular targeting and cytoskeletal attachment of SAP97 to the epithelial lateral membrane. J Cell Sci 111 (Pt 16), 2365–76.

    Google Scholar 

  • Xu, X.X., T. Yi, B. Tang, and J.D. Lambeth. (1998). Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene 16, 1561–9.

    Article  PubMed  CAS  Google Scholar 

  • Yildiz, A., H. Park, D. Safer, Z. Yang, L.Q. Chen, P.R. Selvin, and H.L. Sweeney. (2004). Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J Biol Chem 279, 37223–6.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., W. Cheng, J. Hung, D. Montell, E. Geisbrecht, D. Rosen, J. Liu, and H. Naora. (2004). Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc Natl Acad Sci U S A. 101, 8144–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Buss, F., Kendrick-Jones, J. (2008). Myosin VI: A Multifunctional Motor Protein. In: Myosins. Proteins and Cell Regulation, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6519-4_10

Download citation

Publish with us

Policies and ethics