Skip to main content

From QuantEYE to AquEYE—Instrumentation for Astrophysics on its Shortest Timescales

  • Chapter
High Time Resolution Astrophysics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 351))

  • 884 Accesses

Abstract

Current astronomical instrumentation essentially exploits only spatial or temporal coherence properties of the incoming photon stream. However, beyond this first-order coherence, and encoded in the arrival times of the individual photons, information lies about the details of emission mechanisms such as stimulated emission or of subsequent scattering. The Extremely Large Telescopes of the future could provide the high photon flux needed to export to the astronomical field the photonic techniques currently applied in the laboratory. These ideas were developed in a conceptual study of a focal plane instrument (QuantEYE) for the 100 m OverWhelmingly Large Telescope of the European Southern Observatory. QuantEYE would be a novel astronomical photometer capable to push the time tagging capabilities toward the pico-second region. We are now building a prototype of QuantEYE for the Asiago 182 cm telescope (AquEYE), to be followed by a larger instrument for existing 8–10 m telescopes. This paper expounds the adopted technological solutions and the first steps performed to develop such a prototype

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aull BF, Loomis AH, Young DJ, Heinrichs RM, Felton BJ, Daniels PJ, Landers DJ (2002). In: Geiger-Mode Avalanche Photodiodes for Three-Dimensional Imaging. Lincoln Laboratory Journal Vol 13, Nr 2, p 335

    Google Scholar 

  2. Barbieri C, Da Deppo V, D’Onofrio M, Dravins D, Fornasier S, Fosbury RAE, Naletto G, Nilsson R, Occhipinti T, Tamburini F, Uthas H, Zampieri L (2006) QuantEYE, the Quantum Optics Instrument for OWL. In: Whitelock P, Leibundgut B, Dennefeld M (eds) The Scientific Requirements for Extremely Large Telescopes. IAU Symposium 232. Cambridge University Press, pp 506–507

    Google Scholar 

  3. Barbieri C, Dravins D, Occhipinti T, Tamburini F, Naletto G, Da Deppo V, Fornasier S, D’Onofrio M, Fosbury RAE, Nilsson R, Uthas H (2006) Astronomical applications of quantum optics for extremely large telescopes. Journal of Modern Optics. Special issue of on “Single-Photon: Sources, Detectors, Applications and Measurement Methods”. In press

    Google Scholar 

  4. Belluso M, Mazzillo Cataldo M, Bonanno G, Billotta S, Scuderi S, Calì A, Timpanaro MC, Sanfilippo D, Fallica PG, Sciacca E, Lombardo S, Morabito A (2005) SPAD Array Detectors for Astrophysical Applications. Memories of the Italian Astronomical Society. In press

    Google Scholar 

  5. Bonanno G, Bruno P,Calì A, Cosentino R, di Benedetto R, Puleo M, Scuderi S (1996) Catania Astrophysical Observatory facility for UV CCD characterization. In: Siegmund OH, Gummin MA (eds) EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII. Proc. SPIE, Vol 2808, pp 242–249

    Google Scholar 

  6. Cova S, Ghioni M, Lotito A, Rech I, Zappa, F (2004) Evolution and prospects for single-photon avalanche diodes and quenching circuits. Journal of Modern Optics, Vol 51, nr 9, pp 1267–1288

    ADS  Google Scholar 

  7. Desidera S, Fantinel D, Giro E, Navasardyan H (2003) AFOSC User Manual, Version 1.2. Internal report

    Google Scholar 

  8. Dravins D, Barbieri C, Da Deppo V, Faria D, Fornasier S, Fosbury RAE, Lindegren L, NalettoG, Nilsson R, Occhipinti T, Tamburini F, Uthas H, Zampieri L (2005) QuantEYE. Quantum Optics Instrumentation for Astronomy. In: OWL Instrument Concept Study, ESO document OWL-CSR-ESO-00000-0162

    Google Scholar 

  9. Dravins D, Barbieri C, Fosbury RAE, Naletto G, Nilsson R, Occhipinti T,Tamburini F, UthasH, Zampieri L (2006) Astronomical Quantum Optics with Extremely Large Telescopes. In: Whitelock P, Leibundgut B, Dennefeld M (eds) The Scientific Requirements for Extremely Large Telescopes. IAU Symp. 232, Cambridge University Press, pp 502–505

    Google Scholar 

  10. Dravins D (2006) Photonic Astronomy and Quantum Optics. This volume

    Google Scholar 

  11. Glauber RJ (1963) Photon Correlations. Phys. Rev. Letters Vol 10, p 84

    Article  ADS  MathSciNet  Google Scholar 

  12. Glauber RJ (1963) The Quantum Theory of Optical Coherence. Phys. Rev. Vol 130, p 2529

    Article  ADS  MathSciNet  Google Scholar 

  13. Glauber RJ (1963) Coherent and incoherent states of the radiation field. Phys. Rev. 131, pp 2766–2788

    Google Scholar 

  14. Hanbury Brown R (1974) The Intensity Interferometer. Taylor and Francis, New York.

    Google Scholar 

  15. Kranback G (2006) The OPTIMA photo-polarimeter: new developments and lessons learned. This conference

    Google Scholar 

  16. Naletto G, Barbieri C, Dravins D, Occhipinti T, Tamburini F, Da Deppo V, Fornasier S, D’Onofrio M, Fosbury RAE, Nilsson R, Uthas H, Zampieri L (2006) QuantEYE: A Quantum Optics Instrument for Extremely Large Telescopes. In: Ground-Based and Airborne Instrumentation For Astronomy, SPIE Proc. Vol 6269, p 62691W-1/9

    Google Scholar 

  17. Strueder L (2006) High Speed single photon imaging with AApnCCDs. This conference

    Google Scholar 

  18. Beskin G, Komarova V, Neizvestny S, Plokhotnichenko V, Popova M, Zhuravkov A (1997) The investigations of optical variability on time scales of 10-7÷102 s: hardware, software, results. Exper. Astron. Vol 7, pp 413–420

    Article  ADS  Google Scholar 

  19. Redfern M et al (1992) First Scientific Results from TRIFFID. Gemini Newsletter, Vol 38 p 1

    Google Scholar 

  20. http://www.ing.iac.es/PR/

    Google Scholar 

  21. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on the Theory of Computing (STOC), p 212–219

    Google Scholar 

  22. Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. In: Proc. R. Soc. London A439, p 553—558

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Barbieri, C., Naletto, G., Tamburini, F., Occhipinti, T., Giro, E., D’Onofrio, M. (2008). From QuantEYE to AquEYE—Instrumentation for Astrophysics on its Shortest Timescales. In: Phelan, D., Ryan, O., Shearer, A. (eds) High Time Resolution Astrophysics. Astrophysics and Space Science Library, vol 351. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6518-7_9

Download citation

Publish with us

Policies and ethics