Transition Edge Cameras for Fast Optical Spectrophotometry

  • Roger W. Romani
  • Thomas J. Bay
  • Jennifer Burney
  • Blas Cabrera
Part of the Astrophysics and Space Science Library book series (ASSL, volume 351)


When one spends 108–8.5 euros on a large aperture telescope, it behoves one to make maximal use of the photons concentrated at the focus. One popular path is to use very large focal plane arrays, for a high multiplex advantage; this is a natural driver in extragalactic survey science. The other avenue to efficiency applies to single source science, where a large field of view is not necessary, but energy resolution over a broad wavelength range, high time resolution and, possibly, polarization measurements wring maximum benefit from the collected photons.

Cryogenic energy-resolving sensors are proving to be promising detectors for many areas of astronomy. Significant astronomical observations have, in fact, already been made using two detector schemes: Superconducting Tunnel Junction (STJ) and Transition-Edge Sensor (TES). TES instruments, in particular, have found application as bolometric detectors from the sub-mm to the hard X-ray range. We focus here on TES applications in the near IR through UV, reviewing the basic technology and describing current work toward effective imaging arrays. A TES camera using such arrays can address the need for broad-band single source efficiency at large telescopes noted above. A review of early test observations and a description of a few science goals are presented to illustrate this potential.


Energy Resolution White Dwarf Transition Edge Sensor Dilution Refrigerator Large Telescope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.A. Young, T. Saab, B. Cabrera, J.J. Cross, R.A. Abusaidi, NIMPA, 444, 296 (2000).CrossRefADSGoogle Scholar
  2. 2.
    Cabrera, B.; Clarke, R.M.; Cooling, P.; Miller, A.J.; Nam, S.W.; and Romani, R.W., Appl. Phys. Lett., 73, 735 (1998).CrossRefADSGoogle Scholar
  3. 3.
    K. D. Irwin, Appl. Phys. Lett. 66, 1998 (1995).CrossRefADSGoogle Scholar
  4. 4.
    Nam, S.W.; et al., IEEE Trans. Appl. Supercond., 9(2), 4209 (1999).CrossRefGoogle Scholar
  5. 5.
    Cabrera, B.; and Romani, R.W., Crogenic Particle Detection, (ed. C. Enss), Topics in Appl.Phys. 99, 417 (2005).Google Scholar
  6. 6.
    R.W. Romani, A.J. Miller, B. Cabrera, E. Figueroa-Feliciano, and S.W. Nam, ApJ 521, L153 (1999).CrossRefADSGoogle Scholar
  7. 7.
    R.W. Romani, B. Cabrera, E. Figueroa, A.J. Miller, and S. W. Nam, Bull. Am. Astron. Soc. 193, 11.12 (1998).Google Scholar
  8. 8.
    R.W. Romani, A.J. Miller, B. Cabrera, S.W. Nam, J.M. Martinis, ApJ 563, 221 (2001).CrossRefADSGoogle Scholar
  9. 9.
    J. Burney, T.J. Bay, P.L. Brink, B. Cabrera, J.P. Castle, R.W. Romani, A. Tomada, S.W. Nam, A.J. Miller, J.M. Martinis,E. Wangc , T. Kennyc , and B. Young, Nucl. Instr. and Meth. A 520, 533 (2004).CrossRefADSGoogle Scholar
  10. 10.
    Brammertz, G.; Peacock, A.; Verhoeve, P.; Kozorezov, A.; den Hartog, R.; Rando, N.;Venn, R.; AIP Conference Proceedings; 2002; no.605, p. 59–62.Google Scholar
  11. 11.
    Martin, D.D.E; et al., j SPIE Proc. 6269 22 (2006).Google Scholar
  12. 12.
    Thomas J. Bay, et al.; Proceedings of SPIE Vol. 5209 Materials for Infrared Detectors III, edited by Randolph E. Longshore, Sivalingam Sivananthan (SPIE, Bellingham, WA, 2003).Google Scholar
  13. 13.
    M.A.C. Perryman, M. Cropper, G. Ramsay, F. Favata, A. Peacock, N. Rando, A. Reynolds, Mon. Not. R. Astron. Soc., 324 899 (2001).Google Scholar
  14. 14.
    J.H.J. De Bruijne, A.P. Reynolds, A.M.C. Perryman, A. Peacock, F. Favata, N. Rando, D. Martin, P. Verhoeve, N. Christlieb, Astron. Astrophys., 381, L57 (2002).CrossRefADSGoogle Scholar
  15. 15.
    Reynolds, A.P., Ramsay, G., de Bruinje, J.H.J., Perryman,M.A.C., Cropper,M., Bridge, C.M., and Peacock, A., A&A, 435, 225(2005).CrossRefADSGoogle Scholar
  16. 16.
    Cropper, M.; et al., MNRAS, 334, 33 (2003).CrossRefADSGoogle Scholar
  17. 17.
    J. A. Chervanek, K.D. Irwin, E.N. Grossman, J.M. Martinins, C.D. Reintsema, and M.E. Huber, Appl. Phys. Lett., 74, 4043 (1999).CrossRefADSGoogle Scholar
  18. 18.
    Irwin, K.D.; et al., SPIE Proc. 5498 (2004).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Roger W. Romani
    • 1
  • Thomas J. Bay
    • 1
  • Jennifer Burney
    • 1
  • Blas Cabrera
    • 1
  1. 1.Dept of PhysicsStanford UniversityUSA

Personalised recommendations