Advertisement

In Vivo Magnetic Resonance Spectroscopy of Transgenic Mice with Altered Expression of Guanidinoacetate Methyltransferase and Creatine Kinase Isoenzymes

  • Arend Heerschap
  • Hermien E. Kan
  • Christine I.H.C. Nabuurs
  • W. Klaasjan Renema
  • Dirk Isbrandt
  • BÉ Wieringa
Part of the Subcellular Biochemistry book series (SCBI, volume 46)

Abstract

Mice with an under- or over-expression of enzymes catalyzing phosphoryl transfer in high-energy supplying reactions are particulary attractive for in vivo magnetic resonance spectroscopy (MRS) studies as substrates of these enzymes are visible in MR spectra. This chapter reviews results of in vivo MRS studies on transgenic mice with alterations in the expression of the enzymes creatine kinase and guanidinoacetate methyltransferase. The particular metabolic consequences of these enzyme deficiencies in skeletal muscle, brain, heart and liver are addressed. An overview is given of metabolite levels determined by in vivo MRS in skeletal muscle and brain of wild-type and transgenic mice.

MRS studies on mice lacking guanidinoacetate methyltransferase have demonstrated metabolic changes comparable to those found in the deficiency of this enzyme in humans, which are (partly) reversible upon creatine feeding. Apart from being a model for a creatine deficiency syndrome, these mice are also of interest to study fundamental aspects of the biological role of creatine.

MRS studies on transgenic mice lacking creatine kinase isoenzymes have contributed significantly to the view that the creatine kinase reaction together with other enzymatic steps involved in high-energy phosphate transfer builds a large metabolic energy network, which is highly versatile and can dynamically adapt to genotoxic or physiological challenges

Keywords

Creatine Kinase Mouse Skeletal Muscle Magnetic Resonance Spectroscopy Study Acoustic Startle Reflex Response Mitochondrial Creatine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, J.J., Grove, T.H., Wong, G.G., Gadian, D.G., and Radda, G.K., 1980, Mapping of metabolites in whole animals by $31$P NMR using surface coils. Nature 283: 167–170.PubMedCrossRefGoogle Scholar
  2. Askenasy, N., and Koretsky, A.P., 2002, Transgenic livers expressing mitochondrial and cytosolic CK: mitochondrial CK modulates free ADP levels. Am. J. Physiol. Cell Physiol. 282: C338-C346.PubMedGoogle Scholar
  3. Aubert, A., Pellerin, L., Magistretti, P.J., and Costalat, R., 2007, A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc. Natl. Acad. Sci. USA 104: 4188–4193.PubMedCrossRefGoogle Scholar
  4. Auerbach, W., Hurlbert, M.S., Hilditch-Maguire, P., Wadghiri, Y.Z., Wheeler, V.C., Cohen, S.I., Joyner, A.L., MacDonald, M.E., and Turnbull, D.H., 2001, The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin. Hum. Mol. Genet. 10: 2515–2523.PubMedCrossRefGoogle Scholar
  5. Auricchio, A., Zhou, R., Wilson, J.M., and Glickson, J.D., 2001, In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene. Proc. Natl. Acad. Sci. USA 98: 5205–5210.PubMedCrossRefGoogle Scholar
  6. Bailey, J.E., 1999, Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 17: 616–618.PubMedCrossRefGoogle Scholar
  7. Bessman, S.P., and Fonyo, A., 1966, The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration. Biochem. Biophys. Res. Commun. 22: 597–602.PubMedCrossRefGoogle Scholar
  8. Bessman, S.P., and Geiger, P.J., 1981, Transport of energy in muscle: the phosphorylcreatine shuttle. Science 211: 448–452.PubMedCrossRefGoogle Scholar
  9. Boehm, E.A., Radda, G.K., Tomlin, H., and Clark, J.F., 1996, The utilisation of creatine and its analogues by cytosolic and mitochondrial creatine kinase. Biochim. Biophys. Acta 1274: 119–128.PubMedCrossRefGoogle Scholar
  10. Brault, J.J., Abraham, K.A., and Terjung, R.L., 2003, Phosphocreatine content of freeze-clamped muscle: influence of creatine kinase inhibition. J. Appl. Physiol. 94: 1751–1756.PubMedGoogle Scholar
  11. Brindle, K.M., 1988, NMR methods for measuring enzyme kinetics in vivo. Progr. NMR Spectr. 20: 257–293.CrossRefGoogle Scholar
  12. Brosnan, M.J., Chen, L., Van Dyke, T.A., and Koretsky, A.P., 1990, Free ADP levels in transgenic mouse liver expressing creatine kinase. Effects of enzyme activity, phosphagen type, and substrate concentration. J. Biol. Chem. 265: 20849–20855.PubMedGoogle Scholar
  13. Brosnan, M.J., Chen, L.H., Wheeler, C.E., Van Dyke, T.A., and Koretsky, A.P., 1991a, Phosphocreatine protects ATP from a fructose load in transgenic mouse liver expressing creatine kinase. Am. J. Physiol. 260: C1191–C1200.Google Scholar
  14. Brosnan, M.J., Halow, J.M., and Koretsky, A.P., 1991b, Manipulating creatine kinase activity in transgenic mice to study control of energy metabolism. Biochem. Soc. Trans. 19: 1010–1014.Google Scholar
  15. Brosnan, M.J., Raman, S.P., Chen, L., and Koretsky, A.P., 1993, Altering creatine kinase isoenzymes in transgenic mouse muscle by overexpression of the B subunit. Am. J. Physiol. 264: C151-C160.PubMedGoogle Scholar
  16. Budinger, T.F., Benaron, D.A., and Koretsky, A.P., 1999, Imaging transgenic animals. Annu. Rev. Biomed. Eng. 1: 611–648.PubMedCrossRefGoogle Scholar
  17. Clark, J.F., Khuchua, Z., Kuznetsov, A.V., Vassil’eva, E., Boehm, E., Radda, G.K., and Saks, V., 1994, Actions of the creatine analogue beta-guanidinopropionic acid on rat heart mitochondria. Biochem. J. 300: 211–216.PubMedGoogle Scholar
  18. de Graaf, R.A., 1998, In vivo NMR spectroscopy. Principles and techniques. John Wiley, Chichester.Google Scholar
  19. de Graaf, R.A., Mason, G.F., Patel, A.B., Behar, K.L., and Rothman, D.L., 2003, In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed. 16: 339–357.PubMedCrossRefGoogle Scholar
  20. Dzeja, P.P., and Terzic, A., 2003, Phosphotransfer networks and cellular energetics. J. Exp. Biol. 206: 2039–2047.PubMedCrossRefGoogle Scholar
  21. Forsén, S., and Hoffman, R.A., 1963, Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. Chem. Phys. 39: 2892–2901.CrossRefGoogle Scholar
  22. Gadian, D.G., 1982, NMR and its application to living systems. Clarendon Press, Oxford.Google Scholar
  23. Gruetter, R., Adriany, G., Choi, I.Y., Henry, P.G., Lei, H., and Oz, G., 2003, Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed. 16: 313–338.PubMedCrossRefGoogle Scholar
  24. Heerschap, A., Bergman, A.H., van Vaals, J.J., Wirtz, P., Loermans, H.M., and Veerkamp, J.H., 1988, Alterations in relative phosphocreatine concentrations in preclinical mouse muscular dystrophy revealed by in vivo NMR. NMR Biomed. 1: 27–31.PubMedCrossRefGoogle Scholar
  25. in ’t Zandt, H.J., Oerlemans, F., Wieringa, B., and Heerschap, A., 1999, Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy. NMR Biomed. 12: 327–334.PubMedCrossRefGoogle Scholar
  26. in ’t Zandt, H.J., Klomp, D.W., Oerlemans, F., Wieringa, B., Hilbers, C.W., and Heerschap, A., 2000, Proton MR spectroscopy of wild-type and creatine kinase deficient mouse skeletal muscle: dipole-dipole coupling effects and post-mortem changes. Magn. Reson. Med. 43: 517–524.PubMedCrossRefGoogle Scholar
  27. in ’t Zandt, H.J., Groof, A.J., Renema, W.K., Oerlemans, F.T., Klomp, D.W., Wieringa, B., and Heerschap, A., 2003, Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. J. Physiol. 548: 847–858.PubMedGoogle Scholar
  28. in ’t Zandt, H.J.A., Renema, W.K.J., Streijger, F., Jost, C., Klomp, D.W.J., Oerlemans, F., van der Zee, C.E.E.M., Wieringa, B., and Heerschap, A., 2004, Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study. J. Neurochem. 90: 1321–1330.PubMedCrossRefGoogle Scholar
  29. Ingwall, J.S., 1998, Creatine kinase knockout mice - what is the phenotype: heart. Magma 6: 120–121.PubMedCrossRefGoogle Scholar
  30. Jost, C.R., Van Der Zee, C.E., In ’t Zandt, H.J., Oerlemans, F., Verheij, M., Streijger, F., Fransen, J., Heerschap, A., Cools, A.R., and Wieringa, B., 2002, Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. Eur. J. Neurosci. 15: 1692–1706.PubMedCrossRefGoogle Scholar
  31. Jucker, B.M., Rennings, A.J., Cline, G.W., Petersen, K.F., and Shulman, G.I., 1997, In vivo NMR investigation of intramuscular glucose metabolism in conscious rats. Am. J. Physiol. 273: E139–E148.PubMedGoogle Scholar
  32. Jue, T., Rothman, D.L., Shulman, G.I., Tavitian, B.A., DeFronzo, R.A., and Shulman, R.G., 1989, Direct observation of glycogen synthesis in human muscle with 13C NMR. Proc. Natl. Acad. Sci. USA 86: 4489–4491.PubMedCrossRefGoogle Scholar
  33. Kan, H.E., Buse-Pot, T.E., Peco, R., Isbrandt, D., Heerschap, A., and de Haan, A., 2005, Lower force and impaired performance during high-intensity electrical stimulation in skeletal muscle of GAMT-deficient knockout mice. Am. J. Physiol. Cell Physiol. 289: C113–C119.PubMedCrossRefGoogle Scholar
  34. Kan, H.E., Meeuwissen, E., van Asten, J.J., Veltien, A., Isbrandt, D., and Heerschap, A., 2007, Creatine uptake in brain and skeletal muscle of mice lacking guanidinoacetate methyltransferase assessed by magnetic resonance spectroscopy. J. Appl. Physiol., 102: 2121–2127.PubMedCrossRefGoogle Scholar
  35. Kan, H.E., Renema, W.K., Isbrandt, D., and Heerschap, A., 2004, Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase. J. Physiol. 560: 219–229.PubMedCrossRefGoogle Scholar
  36. Kasischke, K.A., Vishwasrao, H.D., Fisher, P.J., Zipfel, W.R., and Webb, W.W., 2004, Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305: 99–103.PubMedCrossRefGoogle Scholar
  37. Kekelidze, T., Khait, I., Togliatti, A., Benzecry, J.M., Wieringa, B., and Holtzman, D., 2001, Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. J. Neurosci. Res. 66: 866–872.PubMedCrossRefGoogle Scholar
  38. Koretsky, A.P., Brosnan, M.J., Chen, L., and Van Dyke, T., 1990, NMR detection of creatine kinase expressed in liver of transgenic mice: Determination of free ADP levels. Proc. Natl. Acad. Sci. USA 87: 3112–3116.PubMedCrossRefGoogle Scholar
  39. Kruiskamp, M.J., van Vliet, G., and Nicolay, K., 2000, 1H and 31P magnetization transfer studies of hindleg muscle in wild-type and creatine kinase-deficient mice. Magn. Reson. Med. 43: 657–664.PubMedCrossRefGoogle Scholar
  40. MacLaren, D.C., Toyokuni, T., Cherry, S.R., Barrio, J.R., Phelps, M.E., Herschman, H.R., and Gambhir, S.S., 2000, PET imaging of transgene expression. Biol. Psychiatry 48: 337–348.PubMedCrossRefGoogle Scholar
  41. Macomber, R.S., 1998, A complete introduction to modern NMR spectroscopy. John Wiley & Sons, New York.Google Scholar
  42. Masson, S., and Quistorff, B., 1994, Kinetics of creatine uptake in the perfused mouse liver: a 31P-n.m.r. study of transgenic mice expressing creatine kinase (CKBB) in the liver. Biochem. J. 303: 531–538.PubMedGoogle Scholar
  43. Meyer, R.A., Brown, T.R., and Kushmerick, M.J., 1985, Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am. J. Physiol. 248: C279-C287.PubMedGoogle Scholar
  44. Meyer, R.A., Sweeney, H.L., and Kushmerick, M.J., 1984, A simple analysis of the ‘‘phosphocreatine shuttle’’. Am. J. Physiol. 246: C365-C377.PubMedGoogle Scholar
  45. Miller, K., Halow, J., and Koretsky, A.P., 1993, Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and ischemia. Am. J. Physiol. 265: C1544-C1551.PubMedGoogle Scholar
  46. Miller, K., Sharer, K., Suhan, J., and Koretsky, A.P., 1997, Expression of functional mitochondrial creatine kinase in liver of transgenic mice. Am. J. Physiol. 272: C1193-C1202.PubMedGoogle Scholar
  47. Moon, R.B., and Richards, J.H., 1973, Determination of intracellular pH by 31P magnetic resonance. J. Biol. Chem. 248: 7276–7278.PubMedGoogle Scholar
  48. Nicolay, K., van Dorsten, F.A., Reese, T., Kruiskamp, M.J., Gellerich, J.F., and van Echteld, C.J., 1998, In situ measurements of creatine kinase flux by NMR. The lessons from bioengineered mice. Mol. Cell. Biochem. 184: 195–208.PubMedCrossRefGoogle Scholar
  49. Ntziachristos, V., Bremer, C., and Weissleder, R., 2003, Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13: 195–208.PubMedGoogle Scholar
  50. Pellerin, L., and Magistretti, P.J., 2004, Neuroscience. Let there be (NADH) light. Science 305: 50–52.PubMedCrossRefGoogle Scholar
  51. Pfeuffer, J., Tkac, I., Provencher, S.W., and Gruetter, R., 1999, Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J. Magn. Reson. 141: 104–120.PubMedCrossRefGoogle Scholar
  52. Renema, W.K., Schmidt, A., Van Asten, J.J., Oerlemans, F., Ullrich, K., Wieringa, B., Isbrandt, D., and Heerschap, A., 2003, MR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: Validation of an animal model to study creatine deficiency. Magn. Reson. Med. 50: 936–943.PubMedCrossRefGoogle Scholar
  53. Renema, W.K.J., 2005, Magnetic resonance spectroscopy of creatine-related energy metabolism in skeletal muscle and brain. PhD Thesis, Radboud University, Nijmegen, The Netherlands.Google Scholar
  54. Roman, B.B., Foley, J.M., Meyer, R.A., and Koretsky, A.P., 1996, Contractile and metabolic effects of increased creatine kinase activity in mouse skeletal muscle. Am. J. Physiol. 270: C1236–C1245.PubMedGoogle Scholar
  55. Roman, B.B., Meyer, R.A., and Wiseman, R.W., 2002, Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice. Am. J. Physiol. Cell Physiol. 283: C1776-C1783.PubMedGoogle Scholar
  56. Roman, B.B., Wieringa, B., and Koretsky, A.P., 1997, Functional equivalence of creatine kinase isoforms in mouse skeletal muscle. J. Biol. Chem. 272: 17790–17794.PubMedCrossRefGoogle Scholar
  57. Rudin, M., and Sauter, A., 1992, Measurement of reaction rates in vivo using magnetization transfer techniques. NMR Basic Princ. Progr. 27: 257–293.Google Scholar
  58. Saupe, K.W., Spindler, M., Tian, R., and Ingwall, J.S., 1998, Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ. Res. 82: 898–907.PubMedGoogle Scholar
  59. Schmidt, A., Marescau, B., Boehm, E.A., Renema, W.K., Peco, R., Das, A., Steinfeld, R., Chan, S., Wallis, J., Davidoff, M., Ullrich, K., Waldschutz, R., Heerschap, A., De Deyn, P.P., Neubauer, S., and Isbrandt, D., 2004, Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum. Mol. Genet. 13: 905–921.PubMedCrossRefGoogle Scholar
  60. Schneider, J.E., Tyler, D.J., ten Hove, M., Sang, A.E., Cassidy, P.J., Fischer, A., Wallis, J., Sebag-Montefiore, L.M., Watkins, H., Isbrandt, D., Clarke, K., and Neubauer, S., 2004, In vivo cardiac 1H-MRS in the mouse. Magn. Reson. Med. 52: 1029–1035.PubMedCrossRefGoogle Scholar
  61. Speer, O., Back, N., Buerklen, T., Brdiczka, D., Koretsky, A., Wallimann, T., and Eriksson, O., 2005, Octameric mitochondrial creatine kinase induces and stabilizes contact sites between the inner and outer membrane. Biochem. J. 385: 445–450.PubMedCrossRefGoogle Scholar
  62. Spindler, M., Engelhardt, S., Niebler, R., Wagner, H., Hein, L., Lohse, M.J., and Neubauer, S., 2003, Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in β 1-adrenergic receptor transgenic mice. J. Mol. Cell. Cardiol. 35: 389–397.PubMedCrossRefGoogle Scholar
  63. Spindler, M., Niebler, R., Remkes, H., Horn, M., Lanz, T., and Neubauer, S., 2002, Mitochondrial creatine kinase is critically necessary for normal myocardial high-energy phosphate metabolism. Am. J. Physiol. Heart Circ. Physiol. 283: H680-H687.PubMedGoogle Scholar
  64. Steeghs, K., Benders, A., Oerlemans, F., de Haan, A., Heerschap, A., Ruitenbeek, W., Jost, C., van Deursen, J., Perryman, B., Pette, D., Bruckwilder, M., Koudijs, J., Jap, P., Veerkamp, J., and Wieringa, B., 1997a, Altered Ca2 + responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89: 93–103.CrossRefGoogle Scholar
  65. Steeghs, K., Heerschap, A., de Haan, A., Ruitenbeek, W., Oerlemans, F., van Deursen, J., Perryman, B., Pette, D., Brueckwilder, M., Koudijs, J., Jap, P., and Wieringa, B., 1997b, Use of gene targeting for compromising energy homeostasis in neuro-muscular tissues: The role of sarcomeric mitochondrial creatine kinase. J. Neurosci. Meth. 71: 29–41.CrossRefGoogle Scholar
  66. Steeghs, K., Oerlemans, F., de Haan, A., Heerschap, A., Verdoodt, L., de Bie, M., Ruitenbeek, W., Benders, A., Jost, C., van Deursen, J., Tullson, P., Terjung, R., Jap, P., Jacob, W., Pette, D., and Wieringa, B., 1998, Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies. Mol. Cell. Biochem. 184: 183–194.PubMedCrossRefGoogle Scholar
  67. Stöckler, S., Holzbach, U., Hanefeld, F., Marquardt, I., Helms, G., Requart, M., Hanicke, W., and Frahm, J., 1994, Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr. Res. 36: 409–413.PubMedGoogle Scholar
  68. Streijger, F., Jost, C.R., Oerlemans, F., Ellenbroek, B.A., Cools, A.R., Wieringa, B., and Van der Zee, C.E., 2004, Mice lacking the UbCKmit isoform of creatine kinase reveal slower spatial learning acquisition, diminished exploration and habituation, and reduced acoustic startle reflex responses. Mol. Cell. Biochem. 256–257: 305–318.PubMedCrossRefGoogle Scholar
  69. Streijger, F., Oerlemans, F., Ellenbroek, B.A., Jost, C.R., Wieringa, B., and Van der Zee, C.E., 2005, Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behav. Brain Res. 157: 219–234.PubMedCrossRefGoogle Scholar
  70. Tachikawa, M., Fukaya, M., Terasaki, T., Ohtsuki, S., and Watanabe, M., 2004, Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur. J. Neurosci. 20: 144–160.PubMedCrossRefGoogle Scholar
  71. Taylor, D.J., Bore, P.J., Styles, P., Gadian, D.G., and Radda, G.K., 1983, Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol. Biol. Med. 1: 77–94.PubMedGoogle Scholar
  72. ten Hove, M., Lygate, C.A., Fischer, A., Schneider, J.E., Sang, A.E., Hulbert, K., Sebag-Montefiore, L., Watkins, H., Clarke, K., Isbrandt, D., Wallis, J., and Neubauer, S., 2005, Reduced inotropic reserve and increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase-knockout mice. Circulation 111: 2477–2485.PubMedCrossRefGoogle Scholar
  73. ter Veld, F., Jeneson, J.A., and Nicolay, K., 2005, Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles. Possible role in rescuing cellular energy homeostasis. FEBS J. 272: 956–965.PubMedCrossRefGoogle Scholar
  74. Tkac, I., Henry, P.G., Andersen, P., Keene, C.D., Low, W.C., and Gruetter, R., 2004, Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn. Reson. Med. 52: 478–484.PubMedCrossRefGoogle Scholar
  75. van Deursen, J., Heerschap, A., Oerlemans, F., Ruitenbeek, W., Jap, P., ter Laak, H., and Wieringa, B., 1993, Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74: 621–631.PubMedCrossRefGoogle Scholar
  76. van Deursen, J., Jap, P., Heerschap, A., ter Laak, H., Ruitenbeek, W., and Wieringa, B., 1994a, Effects of the creatine analogue beta-guanidinopropionic acid on skeletal muscles of mice deficient in muscle creatine kinase. Biochim. Biophys. Acta 1185: 327–335.CrossRefGoogle Scholar
  77. van Deursen, J., Ruitenbeek, W., Heerschap, A., Jap, P., ter Laak, H., and Wieringa, B., 1994b, Creatine kinase (CK) in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in muscle CK expression. Proc. Natl. Acad. Sci. USA 91: 9091–9095.CrossRefGoogle Scholar
  78. van Dorsten, F.A., Reese, T., Gellerich, J.F., van Echteld, C.J., Nederhoff, M.G., Muller, H.J., van Vliet, G., and Nicolay, K., 1997, Fluxes through cytosolic and mitochondrial creatine kinase, measured by P-31 NMR. Mol. Cell. Biochem. 174: 33–42.PubMedCrossRefGoogle Scholar
  79. van Dorsten, F.A., Nederhoff, M.G., Nicolay, K., and Van Echteld, C.J., 1998, 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart. Am. J. Physiol. 275: H1191-H1199.PubMedGoogle Scholar
  80. Veech, R.L., Lawson, J.W., Cornell, N.W., and Krebs, H.A., 1979, Cytosolic phosphorylation potential. J. Biol. Chem. 254: 6538–6547.PubMedGoogle Scholar
  81. Veksler, V.I., Kuznetsov, A.V., Anflous, K., Mateo, P., van Deursen, J., Wieringa, B., and Ventura-Clapier, R., 1995, Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. J. Biol. Chem. 270: 19921–19929.PubMedCrossRefGoogle Scholar
  82. von Figura, K., Hanefeld, F., Isbrandt, D., and Stöckler-Ipsiroglu, S., 2001, Guanidinoacetate methyltransferase deficiency. In: Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., and Childs, V., eds., The Metabolic and Molecular Bases of Inherited Disease, Chapter 84, pp. 3695–3724, McGraw-Hill, USA.Google Scholar
  83. Wallimann, T., 1994, Bioenergetics. Dissecting the role of creatine kinase. Curr. Biol. 4: 42–46.PubMedCrossRefGoogle Scholar
  84. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H.M., 1992, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostatis. Biochem. J. 281: 21–40.PubMedGoogle Scholar
  85. Walter, G., Barton, E.R., and Sweeney, H.L., 2000, Noninvasive measurement of gene expression in skeletal muscle. Proc. Natl. Acad. Sci. USA 97: 5151–5155.PubMedCrossRefGoogle Scholar
  86. Wiseman, R.W., and Kushmerick, M.J., 1995, Creatine kinase equilibration follows solution thermodynamics in skeletal muscle. 31P NMR studies using creatine analogs. J. Biol. Chem. 270: 12428–12438.PubMedCrossRefGoogle Scholar
  87. Wyss, M., and Kaddurah-Daouk, R., 2000, Creatine and creatinine metabolism. Physiol. Rev. 80: 1107–1213.PubMedGoogle Scholar
  88. Wyss, M., Smeitink, J., Wevers, R.A., and Wallimann, T., 1992, Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim. Biophys. Acta 1102: 119–166.PubMedCrossRefGoogle Scholar
  89. Zeleznikar, R.J., Dzeja, P.P., and Goldberg, N.D., 1995, Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. J. Biol. Chem. 270: 7311–7319.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Arend Heerschap
    • 1
  • Hermien E. Kan
    • 1
  • Christine I.H.C. Nabuurs
    • 1
  • W. Klaasjan Renema
    • 1
  • Dirk Isbrandt
    • 2
  • BÉ Wieringa
    • 3
  1. 1.Department of RadiologyRadboud University Nijmegen Medical Centre6500 HB Nijmegenthe Netherlands
  2. 2.Centre for Molecular Neurobiology Hamburg (ZMNH)University of HamburgD-20246 HamburgGermany
  3. 3.Department of Cell Biology, Nijmegan Centre for Molecular Life ScienceRadboud University Nijmegen Medical Centre6500 HB Nijmegenthe Netherlands

Personalised recommendations