Advertisement

Functional Insights into the Creatine Transporter

  • David L. Christie
Part of the Subcellular Biochemistry book series (SCBI, volume 46)

Abstract

Creatine and phosphocreatine provide an intracellular, high-energy phosphate buffering system, essential to maintain ATP levels in tissues with high energy demands. A specific plasma membrane creatine transporter (CRT) is required for the cellular uptake of creatine. This transporter is related to the \UPgamma -aminobutyric acid (GAT) and norepinephrine (NET) transporters and is part of a large gene family of Na+- and Cl--dependent neurotransmitter transporters, now known as solute carrier family 6 (SLC6). CRT is essential for normal brain function as mutations in the CRT gene (SLC6A8) result in X-linked mental retardation, associated with the almost complete lack of creatine in the brain, severe speech and language delay, epilepsy, and autistic behaviour. Insight into the structure and function of the CRT has come from studies of creatine transport by tissues and cells, in vitro studies of CRT mutations, identification of mutations associated with CRT deficiency, and from the recent high resolution structure of a prokaryotic homologue of the SLC6 transporters. CRT antibodies have been developed enabling the localization of creatine uptake sites in the brain, retina, muscle and other tissues. These tools in conjunction with the use of appropriate cell models should allow further progress in our knowledge on the regulation and cellular trafficking of the CRT. Development of suitable mouse models may allow improved understanding of the importance of the CRT for normal brain function and how the transporter is regulated in vivo

Keywords

Creatine Supplementation Gaba Transporter Neurotransmitter Transporter Creatine Transporter Functional Insight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta, M.L., Kalloniatis, M., and Christie, D.L., 2005, Creatine transporter localization in developing and adult retina: importance of creatine to retinal function. Am. J. Physiol. Cell Physiol. 289: C1015–C1023.PubMedCrossRefGoogle Scholar
  2. Alfieri, R.R., Bonelli, M.A., Cavazzoni, A., Briggotti, M., Fumarola, C., Sestili, P., Mozzoni, P., G, D.E.P., Mutti, A., Carnicelli, D., Vacondio, F., Silva, C., Borghetti, A.F., Wheeler, K.P., and Petronini, P.G., 2006, Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress. J. Physiol. 576: 391–401.PubMedCrossRefGoogle Scholar
  3. Almeida, L.S., Salomons, G.S., Hogenboom, F., Jakobs, C., and Schoffelmeer, A.N., 2006, Exocytotic release of creatine in rat brain. Synapse 60: 118–123.PubMedCrossRefGoogle Scholar
  4. Almeida, L.S., Verhoeven, N.M., Roos, B., Valongo, C., Cardoso, M.L., Vilarinho, L., Salomons, G.S., and Jakobs, C., 2004, Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol. Genet. Metab. 82: 214–219.PubMedCrossRefGoogle Scholar
  5. Androutsellis-Theotokis, A., Goldberg, N.R., Ueda, K., Beppu, T., Beckman, M.L., Das, S., Javitch, J.A., and Rudnick, G., 2003, Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J. Biol. Chem. 278: 12703–12709.PubMedCrossRefGoogle Scholar
  6. Bernstein, E.M., and Quick, M.W., 1999, Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J. Biol. Chem. 274: 889–895.PubMedCrossRefGoogle Scholar
  7. Boehm, E., Chan, S., Monfared, M., Wallimann, T., Clarke, K., and Neubauer, S., 2003, Creatine transporter activity and content in the rat heart supplemented by and depleted of creatine. Am. J. Physiol. Endocrinol. Metab. 284: E399–E406.PubMedGoogle Scholar
  8. Brault, J.J., Abraham, K.A., and Terjung, R.L., 2003, Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion. J. Appl. Physiol. 94: 2173–2180.PubMedCrossRefGoogle Scholar
  9. Broer, A., Klingel, K., Kowalczuk, S., Rasko, J.E., Cavanaugh, J., and Broer, S., 2004, Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J. Biol. Chem. 279: 24467–24476.PubMedCrossRefGoogle Scholar
  10. Broer, S., 2006, The SLC6 orphans are forming a family of amino acid transporters. Neurochem. Int. 48: 559–567.PubMedGoogle Scholar
  11. Brone, B., and Eggermont, J., 2005, PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am. J. Physiol. Cell Physiol. 288: C20–C29.PubMedGoogle Scholar
  12. Buckley, K.M., Melikian, H.E., Provoda, C.J., and Waring, M.T., 2000, Regulation of neuronal function by protein trafficking: a role for the endosomal pathway. J. Physiol. 525: 11–19.PubMedCrossRefGoogle Scholar
  13. Burton, L.D., Kippenberger, A.G., Lingen, B., Bruss, M., Bonisch, H., and Christie, D.L., 1998, A variant of the bovine noradrenaline transporter reveals the importance of the C-terminal region for correct targeting to the membrane and functional expression. Biochem. J. 330: 909–914.PubMedGoogle Scholar
  14. Cecil, K.M., DeGrauw, T.J., Salomons, G.S., Jakobs, C., Egelhoff, J.C., and Clark, J.F., 2003, Magnetic resonance spectroscopy in a 9-day-old heterozygous female child with creatine transporter deficiency. J. Comput. Assist. Tomogr. 27: 44–47.PubMedCrossRefGoogle Scholar
  15. Chen, J.G., and Rudnick, G., 2000, Permeation and gating residues in serotonin transporter. Proc. Natl. Acad. Sci. USA 97: 1044–1049.PubMedCrossRefGoogle Scholar
  16. Chen, J.G., Sachpatzidis, A., and Rudnick, G., 1997, The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. J. Biol. Chem. {\bf 272: 28321–28327.CrossRefGoogle Scholar
  17. Chen, N.H., Reith, M.E., and Quick, M.W., 2004, Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch. 447: 519–531.PubMedCrossRefGoogle Scholar
  18. Chiu, C.S., Jensen, K., Sokolova, I., Wang, D., Li, M., Deshpande, P., Davidson, N., Mody, I., Quick, M.W., Quake, S.R., and Lester, H.A., 2002, Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J. Neurosci. 22: 10251–10266.PubMedGoogle Scholar
  19. Clark, A.J., Rosenberg, E.H., Almeida, L.S., Wood, T.C., Jakobs, C., Stevenson, R.E., Schwartz, C.E., and Salomons, G.S., 2006, X-linked creatine transporter (SLC6A8) mutations in about 1% of males with mental retardation of unknown etiology. Hum. Genet. 119: 604–610.PubMedCrossRefGoogle Scholar
  20. Dai, W., Vinnakota, S., Qian, X., Kunze, D.L., and Sarkar, H.K., 1999, Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch. Biochem. Biophys. 361: 75–84.PubMedCrossRefGoogle Scholar
  21. Daly, M.M., and Seifter, S., 1980, Uptake of creatine by cultured cells. Arch. Biochem. Biophys. 203: 317–324.PubMedCrossRefGoogle Scholar
  22. Deken, S.L., Beckman, M.L., Boos, L., and Quick, M.W., 2000, Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Nat. Neurosci. 3: 998–1003.PubMedCrossRefGoogle Scholar
  23. Deken, S.L., Wang, D., and Quick, M.W., 2003, Plasma membrane GABA transporters reside on distinct vesicles and undergo rapid regulated recycling. J. Neurosci. 23: 1563–1568.PubMedGoogle Scholar
  24. Derave, W., Straumann, N., Olek, R.A., and Hespel, P., 2006, Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: potential role of ROS. Am. J. Physiol. Endocrinol. Metab. 291: E1250–E1257.PubMedCrossRefGoogle Scholar
  25. Dodd, J.R., Zheng, T., and Christie, D.L., 1999, Creatine accumulation and exchange by HEK293 cells stably expressing high levels of a creatine transporter. Biochim. Biophys. Acta 1472: 128–136.PubMedGoogle Scholar
  26. Dodd, J.R., and Christie, D.L., 2001, Cysteine 144 in the third transmembrane domain of the creatine transporter is located close to a substrate-binding site. J. Biol. Chem. 276: 46983–46988.PubMedCrossRefGoogle Scholar
  27. Dodd, J.R., and Christie, D.L., 2005, Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway. J. Biol. Chem. 280: 32649–32654.PubMedCrossRefGoogle Scholar
  28. Dodd, J.R., and Christie, D.L., 2007, Selective amino acid substitutions convert the creatine transporter to a gamma -aminobutyric acid transporter. J. Biol. Chem. 282: 15528–15533.PubMedCrossRefGoogle Scholar
  29. Eichler, E.E., Lu, F., Shen, Y., Antonacci, R., Jurecic, V., Doggett, N.A., Moyzis, R.K., Baldini, A., Gibbs, R.A., and Nelson, D.L., 1996, Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum. Mol. Genet. 5: 899–912.PubMedCrossRefGoogle Scholar
  30. Fitch, C.D., and Shields, R.P., 1966, Creatine metabolism in skeletal muscle. I. Creatine movement across muscle membranes. J. Biol. Chem. 241: 3611–3614.PubMedGoogle Scholar
  31. Fitch, C.D., Shields, R.P., Payne, W.F., and Dacus, J.M., 1968, Creatine metabolism in skeletal muscle. 3. Specificity of the creatine entry process. J. Biol. Chem. 243: 2024–2027.PubMedGoogle Scholar
  32. Galli, A., DeFelice, L.J., Duke, B.J., Moore, K.R., and Blakely, R.D., 1995, Sodium-dependent norepinephrine-induced currents in norepinephrine- transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J. Exp. Biol. 198: 2197–2212.PubMedGoogle Scholar
  33. Garcia-Delgado, M., Peral, M.J., Cano, M., Calonge, M.L., and Ilundain, A.A., 2001, Creatine transport in brush-border membrane vesicles isolated from rat kidney cortex. J. Am. Soc. Nephrol. 12: 1819–1825.PubMedGoogle Scholar
  34. Gether, U., Andersen, P.H., Larsson, O.M., and Schousboe, A., 2006, Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol. Sci. 27: 375–383.PubMedCrossRefGoogle Scholar
  35. Gonzalez, A.M., and Uhl, G.R., 1994, ‘Choline/orphan V8-2-1/creatine transporter’ mRNA is expressed in nervous, renal and gastrointestinal systems. Brain Res. Mol. Brain Res. 23: 266–270.PubMedCrossRefGoogle Scholar
  36. Gregor, P., Nash, S.R., Caron, M.G., Seldin, M.F., and Warren, S.T., 1995, Assignment of the creatine transporter gene (SLC6A8) to human chromosome Xq28 telomeric to G6PD. Genomics 25: 332–333.PubMedCrossRefGoogle Scholar
  37. Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M.C., Davidson, N., Lester, H.A., and Kanner, B.I., 1990, Cloning and expression of a rat brain GABA transporter. Science 249: 1303–1306.PubMedCrossRefGoogle Scholar
  38. Guerrero-Ontiveros, M.L., and Wallimann, T., 1998, Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol. Cell. Biochem. 184: 427–437.PubMedCrossRefGoogle Scholar
  39. Guimbal, C., and Kilimann, M.W., 1993, A Na+-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J. Biol. Chem. 268: 8418–8421.PubMedGoogle Scholar
  40. Guimbal, C., and Kilimann, M.W., 1994, A creatine transporter cDNA from Torpedo illustrates structure/function relationships in the GABA/noradrenaline transporter family. J. Mol. Biol. 241: 317–324.PubMedCrossRefGoogle Scholar
  41. Hahn, K.A., Salomons, G.S., Tackels-Horne, D., Wood, T.C., Taylor, H.A., Schroer, R.J., Lubs, H.A., Jakobs, C., Olson, R.L., Holden, K.R., Stevenson, R.E., and Schwartz, C.E., 2002, X-linked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28. Am. J. Hum. Genet. 70: 1349–1356.PubMedCrossRefGoogle Scholar
  42. Happe, H.K., and Murrin, L.C., 1995, In situ hybridization analysis of CHOT1, a creatine transporter, in the rat central nervous system. J. Comp. Neurol. 351: 94–103.PubMedCrossRefGoogle Scholar
  43. Hemmer, W., Riesinger, I., Wallimann, T., Eppenberger, H.M., and Quest, A.F., 1993, Brain-type creatine kinase in photoreceptor cell outer segments: role of a phosphocreatine circuit in outer segment energy metabolism and phototransduction. J. Cell. Sci. 106: 671–683.PubMedGoogle Scholar
  44. Henry, L.K., Defelice, L.J., and Blakely, R.D., 2006, Getting the message across: a recent transporter structure shows the way. Neuron 49: 791–796.PubMedCrossRefGoogle Scholar
  45. Hiel, H., Happe, H.K., Warr, W.B., and Morley, B.J., 1996, Regional distribution of a creatine transporter in rat auditory brainstem: an in-situ hybridization study. Hear. Res. 98: 29–37.PubMedCrossRefGoogle Scholar
  46. Iyer, G.S., Krahe, R., Goodwin, L.A., Doggett, N.A., Siciliano, M.J., Funanage, V.L., and Proujansky, R., 1996, Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28. Genomics 34: 143–146.PubMedCrossRefGoogle Scholar
  47. Kanner, B.I., 2005, Molecular physiology: intimate contact enables transport. Nature 437: 203–205.PubMedCrossRefGoogle Scholar
  48. Lang, F., Henke, G., Embark, H.M., Waldegger, S., Palmada, M., Bohmer, C., and Vallon, V., 2003, Regulation of channels by the serum and glucocorticoid-inducible kinase - implications for transport, excitability and cell proliferation. Cell. Physiol. Biochem. 13: 41–50.PubMedCrossRefGoogle Scholar
  49. Law, R.M., Stafford, A., and Quick, M.W., 2000, Functional regulation of gamma-aminobutyric acid transporters by direct tyrosine phosphorylation. J. Biol. Chem. 275: 23986–23991.PubMedCrossRefGoogle Scholar
  50. Lenz, H., Schmidt, M., Welge, V., Schlattner, U., Wallimann, T., Elsasser, H.P., Wittern, K.P., Wenck, H., Stab, F., and Blatt, T., 2005, The creatine kinase system in human skin: protective effects of creatine against oxidative and UV damage in vitro and in vivo. J. Invest. Dermatol. 124: 443–452.PubMedCrossRefGoogle Scholar
  51. Loder, M.K., and Melikian, H.E., 2003, The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J. Biol. Chem. 278: 22168–22174.PubMedCrossRefGoogle Scholar
  52. Loike, J.D., Somes, M., and Silverstein, S.C., 1986, Creatine uptake, metabolism, and efflux in human monocytes and macrophages. Am. J. Physiol. 251: C128–C135.PubMedGoogle Scholar
  53. Loike, J.D., Zalutsky, D.L., Kaback, E., Miranda, A.F., and Silverstein, S.C., 1988, Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc. Natl. Acad. Sci. USA 85: 807–811.PubMedCrossRefGoogle Scholar
  54. Loland, C.J., Norregaard, L., and Gether, U., 1999, Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous Zn2+-binding site. J. Biol. Chem. 274: 36928–36934.PubMedCrossRefGoogle Scholar
  55. Lunardi, G., Parodi, A., Perasso, L., Pohvozcheva, A.V., Scarrone, S., Adriano, E., Florio, T., Gandolfo, C., Cupello, A., Burov, S.V., and Balestrino, M., 2006, The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds. Neuroscience 142: 991–997.PubMedCrossRefGoogle Scholar
  56. MacAulay, N., Bendahan, A., Loland, C.J., Zeuthen, T., Kanner, B.I., and Gether, U., 2001, Engineered Zn2 + switches in the gamma-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents. J. Biol. Chem. 276: 40476–40485.PubMedCrossRefGoogle Scholar
  57. Mahon, M.J., Donowitz, M., Yun, C.C., and Segre, G.V., 2002, Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 417: 858–861.PubMedCrossRefGoogle Scholar
  58. Marescau, B., De Deyn, P., Wiechert, P., Van Gorp, L., and Lowenthal, A., 1986, Comparative study of guanidino compounds in serum and brain of mouse, rat, rabbit, and man. J. Neurochem. 46: 717–720.PubMedCrossRefGoogle Scholar
  59. Mayser, W., Schloss, P., and Betz, H., 1992, Primary structure and functional expression of a choline transporter expressed in the rat nervous system. FEBS Lett. 305: 31–36.PubMedCrossRefGoogle Scholar
  60. Melikian, H.E., 2004, Neurotransmitter transporter trafficking: endocytosis, recycling, and regulation. Pharmacol. Ther. 104: 17–27.PubMedCrossRefGoogle Scholar
  61. Mitchell, S.M., Lee, E., Garcia, M.L., and Stephan, M.M., 2004, Structure and function of extracellular loop 4 of the serotonin transporter as revealed by cysteine-scanning mutagenesis. J. Biol. Chem. 279: 24089–24099.PubMedCrossRefGoogle Scholar
  62. Moller, A., and Hamprecht, B., 1989, Creatine transport in cultured cells of rat and mouse brain. J. Neurochem. 52: 544–550.PubMedCrossRefGoogle Scholar
  63. Murphy, R., McConell, G., Cameron-Smith, D., Watt, K., Ackland, L., Walzel, B., Wallimann, T., and Snow, R., 2001, Creatine transporter protein content, localization, and gene expression in rat skeletal muscle. Am. J. Physiol. Cell Physiol. 280: C415–C422.PubMedGoogle Scholar
  64. Nakashima, T., Tomi, M., Katayama, K., Tachikawa, M., Watanabe, M., Terasaki, T., and Hosoya, K., 2004, Blood-to-retina transport of creatine via creatine transporter (CRT) at the rat inner blood-retinal barrier. J. Neurochem. 89: 1454–1461.PubMedCrossRefGoogle Scholar
  65. Nash, S.R., Giros, B., Kingsmore, S.F., Rochelle, J.M., Suter, S.T., Gregor, P., Seldin, M.F., and Caron, M.G., 1994, Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 2: 165–174.PubMedGoogle Scholar
  66. Nelson, N., 1998, The family of Na+/Cl- neurotransmitter transporters. J. Neurochem. 71: 1785–1803.PubMedCrossRefGoogle Scholar
  67. Norregaard, L., Loland, C.J., and Gether, U., 2003, Evidence for distinct sodium-, dopamine-, and cocaine-dependent conformational changes in transmembrane segments 7 and 8 of the dopamine transporter. J. Biol. Chem. 278: 30587–30596.PubMedCrossRefGoogle Scholar
  68. Odoom, J.E., Kemp, G.J., and Radda, G.K., 1996, The regulation of total creatine content in a myoblast cell line. Mol. Cell. Biochem. 158: 179–188.PubMedCrossRefGoogle Scholar
  69. Ohtsuki, S., Tachikawa, M., Takanaga, H., Shimizu, H., Watanabe, M., Hosoya, K., and Terasaki, T., 2002, The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J. Cereb. Blood Flow Metab. 22: 1327–1335.PubMedCrossRefGoogle Scholar
  70. Omerovic, E., Bollano, E., Lorentzon, M., Walser, M., Mattsson-Hulten, L., and Isgaard, J., 2003, Growth hormone induces myocardial expression of creatine transporter and decreases plasma levels of IL-1beta in rats during early postinfarct cardiac remodeling. Growth Horm. IGF Res. 13: 239–245.PubMedCrossRefGoogle Scholar
  71. Orsenigo, M.N., Faelli, A., De Biasi, S., Sironi, C., Laforenza, U., Paulmichl, M., and Tosco, M., 2005, Jejunal creatine absorption: what is the role of the basolateral membrane? J. Membr. Biol. 207: 183–195.PubMedCrossRefGoogle Scholar
  72. Paczkowski, F.A., Bryan-Lluka, L.J., Porzgen, P., Bruss, M., and Bonisch, H., 1999, Comparison of the pharmacological properties of cloned rat, human, and bovine norepinephrine transporters. J. Pharmacol. Exp. Ther. 290: 761–767.PubMedGoogle Scholar
  73. Peral, M.J., Garcia-Delgado, M., Calonge, M.L., Duran, J.M., De La Horra, M.C., Wallimann, T., Speer, O., and Ilundain, A., 2002, Human, rat and chicken small intestinal Na+-Cl--creatine transporter: functional, molecular characterization and localization. J. Physiol. 545: 133–144.PubMedCrossRefGoogle Scholar
  74. Quick, M., Yano, H., Goldberg, N.R., Duan, L., Beuming, T., Shi, L., Weinstein, H., and Javitch, J.A., 2006, State-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter: sodium symporter from Fusobacterium nucleatum. J. Biol. Chem. 281: 26444–26454.CrossRefGoogle Scholar
  75. Rosenberg, E.H., Almeida, L.S., Kleefstra, T., deGrauw, R.S., Yntema, H.G., Bahi, N., Moraine, C., Ropers, H.H., Fryns, J.P., deGrauw, T.J., Jakobs, C., and Salomons, G.S., 2004, High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am. J. Hum. Genet. 75: 97–105.PubMedCrossRefGoogle Scholar
  76. Saier, M.H., Jr., 1999, A functional-phylogenetic system for the classification of transport proteins. J. Cell. Biochem. Suppl. 32–33: 84–94.PubMedCrossRefGoogle Scholar
  77. Salomons, G.S., van Dooren, S.J., Verhoeven, N.M., Cecil, K.M., Ball, W.S., Degrauw, T.J., and Jakobs, C., 2001, X-linked creatine-transporter gene (SLC6A8) defect: a new creatine- deficiency syndrome. Am. J. Hum. Genet. 68: 1497–1500.PubMedCrossRefGoogle Scholar
  78. Salomons, G.S., van Dooren, S.J., Verhoeven, N.M., Marsden, D., Schwartz, C., Cecil, K.M., DeGrauw, T.J., and Jakobs, C., 2003, X-linked creatine transporter defect: an overview. J. Inherit. Metab. Dis. 26: 309–318.PubMedCrossRefGoogle Scholar
  79. Saltarelli, M.D., Bauman, A.L., Moore, K.R., Bradley, C.C., and Blakely, R.D., 1996, Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev. Neurosci. 18: 524–534.PubMedGoogle Scholar
  80. Sandoval, N., Bauer, D., Brenner, V., Coy, J.F., Drescher, B., Kioschis, P., Korn, B., Nyakatura, G., Poustka, A., Reichwald, K., Rosenthal, A., and Platzer, M., 1996, The genomic organization of a human creatine transporter (CRTR) gene located in Xq28. Genomics 35: 383–385.PubMedCrossRefGoogle Scholar
  81. Schlattner, U., Mockli, N., Speer, O., Werner, S., and Wallimann, T., 2002, Creatine kinase and creatine transporter in normal, wounded, and diseased skin. J. Invest. Dermatol. 118: 416–423.PubMedCrossRefGoogle Scholar
  82. Schloss, P., Mayser, W., and Betz, H., 1994, The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem. Biophys. Res. Commun. 198: 637–645.PubMedCrossRefGoogle Scholar
  83. Sheng, M., and Sala, C., 2001, PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24: 1–29.PubMedCrossRefGoogle Scholar
  84. Shojaiefard, M., Christie, D.L., and Lang, F., 2005, Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem. Biophys. Res. Commun. 334: 742–746.PubMedCrossRefGoogle Scholar
  85. Shojaiefard, M., Christie, D.L., and Lang, F., 2006, Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR. Biochem. Biophys. Res. Commun. 341: 945–949.PubMedCrossRefGoogle Scholar
  86. Snow, R.J., and Murphy, R.M., 2001, Creatine and the creatine transporter: a review. Mol. Cell. Biochem. 224: 169–181.PubMedCrossRefGoogle Scholar
  87. Sora, I., Richman, J., Santoro, G., Wei, H., Wang, Y., Vanderah, T., Horvath, R., Nguyen, M., Waite, S., Roeske, W.R., and et al., 1994, The cloning and expression of a human creatine transporter. Biochem. Biophys. Res. Commun. 204: 419–427.PubMedCrossRefGoogle Scholar
  88. Speer, O., Neukomm, L.J., Murphy, R.M., Zanolla, E., Schlattner, U., Henry, H., Snow, R.J., and Wallimann, T., 2004, Creatine transporters: a reappraisal. Mol. Cell. Biochem. 256–257: 407–424.PubMedCrossRefGoogle Scholar
  89. Stockler, S., Schutz, P.W., and Salomons, G.S., 2007, Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell. Biochem. 46: 149–166.PubMedGoogle Scholar
  90. Straumann, N., Wind, A., Leuenberger, T., and Wallimann, T., 2006, Effects of N-linked glycosylation on the creatine transporter. Biochem. J. 393: 459–469.PubMedCrossRefGoogle Scholar
  91. Sung, U., Apparsundaram, S., Galli, A., Kahlig, K.M., Savchenko, V., Schroeter, S., Quick, M.W., and Blakely, R.D., 2003, A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity. J. Neurosci. 23: 1697–1709.PubMedGoogle Scholar
  92. Tarnopolsky, M., Parise, G., Fu, M.H., Brose, A., Parshad, A., Speer, O., and Wallimann, T., 2003, Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans. Mol. Cell. Biochem. 244: 159–166.PubMedCrossRefGoogle Scholar
  93. Tarnopolsky, M.A., Parshad, A., Walzel, B., Schlattner, U., and Wallimann, T., 2001, Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve 24: 682–688.PubMedCrossRefGoogle Scholar
  94. Ten Hove, M., Chan, S., Lygate, C., Monfared, M., Boehm, E., Hulbert, K., Watkins, H., Clarke, K., and Neubauer, S., 2005, Mechanisms of creatine depletion in chronically failing rat heart. J. Mol. Cell. Cardiol. 38: 309–313.PubMedCrossRefGoogle Scholar
  95. Tosco, M., Faelli, A., Sironi, C., Gastaldi, G., and Orsenigo, M.N., 2004, A creatine transporter is operative at the brush border level of the rat jejunal enterocyte. J. Membr. Biol. 202: 85–95.PubMedCrossRefGoogle Scholar
  96. Tran, T.T., Dai, W., and Sarkar, H.K., 2000, Cyclosporin A inhibits creatine uptake by altering surface expression of the creatine transporter. J. Biol. Chem. 275: 35708–35714.PubMedCrossRefGoogle Scholar
  97. Wallis, J., Lygate, C.A., Fischer, A., ten Hove, M., Schneider, J.E., Sebag-Montefiore, L., Dawson, D., Hulbert, K., Zhang, W., Zhang, M.H., Watkins, H., Clarke, K., and Neubauer, S., 2005, Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine transporter-overexpressing transgenic mice. Circulation 112: 3131–3139.PubMedCrossRefGoogle Scholar
  98. Walzel, B., Speer, O., Boehm, E., Kristiansen, S., Chan, S., Clarke, K., Magyar, J.P., Richter, E.A., and Wallimann, T., 2002, New creatine transporter assay and identification of distinct creatine transporter isoforms in muscle. Am. J. Physiol. Endocrinol. Metab. 283: E390–E401.PubMedGoogle Scholar
  99. Wang, W., Jobst, M.A., Bell, B., Zhao, C.R., Shang, L.H., and Jacobs, D.O., 2002, Cr supplementation decreases tyrosine phosphorylation of the CreaT in skeletal muscle during sepsis. Am. J. Physiol. Endocrinol. Metab. 282: E1046–E1054.PubMedGoogle Scholar
  100. West, M., Park, D., Dodd, J., Kistler, J., and Christie, D., 2005, Purification and characterization of the creatine transporter expressed at high levels in HEK293 cells. Prot. Expr. Purif. 41: 393–401.CrossRefGoogle Scholar
  101. Whitworth, T.L., and Quick, M.W., 2001, Substrate-induced regulation of gamma-aminobutyric acid transporter trafficking requires tyrosine phosphorylation. J. Biol. Chem. 276: 42932–42937.PubMedCrossRefGoogle Scholar
  102. Wyss, M., and Schulze, A., 2002, Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112: 243–260.PubMedCrossRefGoogle Scholar
  103. Xu, W., Liu, L., Gorman, P.A., Sheer, D., and Emson, P.C., 1997, Assignment of the human creatine transporter type 2 (SLC6A10) to chromosome band 16p11.2 by in situ hybridization. Cytogenet. Cell Genet. 76: 19.PubMedCrossRefGoogle Scholar
  104. Yamashita, A., Singh, S.K., Kawate, T., Jin, Y., and Gouaux, E., 2005, Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature 437: 215–223.PubMedCrossRefGoogle Scholar
  105. Zhao, C.R., Shang, L., Wang, W., and Jacobs, D.O., 2002, Myocellular creatine and creatine transporter serine phosphorylation after starvation. J. Surg. Res. 105: 10–16.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • David L. Christie
    • 1
  1. 1.Molecular, Cell and Developmental Biology Section, School of Biological SciencesUniversity of AucklandPrivate Bag 92019New Zealand

Personalised recommendations