A Novel Relationship Between Creatine Transport at the Blood-Brain and Blood-Retinal Barriers, Creatine Biosynthesis, And its Use for Brain and Retinal Energy Homeostasis

  • Masanori Tachikawa
  • Ken-Ichi Hosoya
  • Sumio Ohtsuki
  • Tetsuya Terasaki
Part of the Subcellular Biochemistry book series (SCBI, volume 46)


Evidence is increasing that the creatine/phosphocreatine shuttle system plays an essential role in energy homeostasis in the brain and retina to ensure proper development and function. Thus, our understanding of the mechanism of creatine supply and creatine usage in the brain and retina and of creatine supplementation in patients with creatine deficiency syndromes is an important step towards improved therapeutic strategies for brain and retinal disorders. Our recent research provides novel molecular-anatomical evidence that,(i) at the blood-brain barrier and the inner blood-retinal barrier, the creatine transporter (CRT/SLC6A8) functions as a major pathway for supplying creatine to the brain and retina, and that (ii) local creatine is preferentially synthesized in the glial cells, e.g., oligodendrocytes, astrocytes, and Müller cells, in the brain and retina. Thus, the blood-brain barrier and inner blood-retinal barrier play important roles not only in supplying energy sources (glucose and lactate), but also in supplying an energy ‘buffer’ (creatine). These findings lead to the novel insight that the creatine/phosphocreatine shuttle system is based on an intricate relationship between the blood-brain barrier, inner blood-retinal barrier, glia, and neurons (photoreceptor cells) to maintain and ensure energy homeostasis in the brain and retina


Amyotrophic Lateral Sclerosis Photoreceptor Cell Creatine Supplementation Creatine Transporter Shuttle System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta, M.L., Kalloniatis, M., and Christie, D.L., 2005, Creatine transporter localization in developing and adult retina: importance of creatine to retinal function. Am. J. Physiol. Cell Physiol. 289: C1015–C1023.PubMedCrossRefGoogle Scholar
  2. Almeida, L.S., Verhoeven, N.M., Roos, B., Valongo, C., Cardoso, M.L., Vilarinho, L., Salomons, G.S., and Jakobs, C., 2004, Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol. Genet. Metab. 82: 214–219.PubMedCrossRefGoogle Scholar
  3. Balestrino, M., Rebaudo, R., and Lunardi, G., 1999, Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res. 816: 124–130.PubMedCrossRefGoogle Scholar
  4. Bélanger, M., Asashima, T., Ohtsuki, S., Yamaguchi, H., Ito, S., and Terasaki, T., 2007, Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem. Int. 50: 95–101.PubMedCrossRefGoogle Scholar
  5. Bianchi, M.C., Tosetti, M., Fornai, F., Alessandri, M.G., Cipriani, P., De Vito, G., and Canapicchi, R., 2000, Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann. Neurol. 47: 511–513.PubMedCrossRefGoogle Scholar
  6. Bizzi, A., Bugiani, M., Salomons, G.S., Hunneman, D.H., Moroni, I., Estienne, M., Danesi, U., Jakobs, C., and Uziel, G., 2002, X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann. Neurol. 52: 227–231.PubMedCrossRefGoogle Scholar
  7. Braissant, O., Henry, H., Loup, M., Eilers, B., and Bachmann, C., 2001, Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res. Mol. Brain Res. 86: 193–201.PubMedCrossRefGoogle Scholar
  8. Braissant, O., Bachmann, C., and Henry, H., 2007, Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Subcell. Biochem. 46: 67–81.CrossRefPubMedGoogle Scholar
  9. Brewer, G.J., and Wallimann, T.W., 2000, Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J. Neurochem. 74: 1968–1978.PubMedCrossRefGoogle Scholar
  10. Cecil, K.M., Salomons, G.S., Ball, W.S., Jr., Wong, B., Chuck, G., Verhoeven, N.M., Jakobs, C., and DeGrauw, T.J., 2001, Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann. Neurol. 49: 401–404.PubMedCrossRefGoogle Scholar
  11. Dechent, P., Pouwels, P.J., Wilken, B., Hanefeld, F., and Frahm, J., 1999, Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol. 277: R698–R704.PubMedGoogle Scholar
  12. deGrauw, T.J., Salomons, G.S., Cecil, K.M., Chuck, G., Newmeyer, A., Schapiro, M.B., and Jakobs, C., 2002, Congenital creatine transporter deficiency. Neuropediatrics 33: 232–238.PubMedCrossRefGoogle Scholar
  13. Dringen, R., Verleysdonk, S., Hamprecht, B., Willker, W., Leibfritz, D., and Brand, A., 1998, Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J. Neurochem. 70: 835–840.PubMedCrossRefGoogle Scholar
  14. Enerson, B.E., and Drewes, L.R., 2003, Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J. Pharm. Sci. 92: 1531–1544.PubMedCrossRefGoogle Scholar
  15. Gerhart, D.Z., Leino, R.L., and Drewes, L.R., 1999, Distribution of monocarboxylate transporters MCT1 and MCT2 in rat retina. Neuroscience 92: 367–375.PubMedCrossRefGoogle Scholar
  16. Guimbal, C., and Kilimann, M.W., 1993, A Na+ -dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J. Biol. Chem. 268: 8418–8421.PubMedGoogle Scholar
  17. Hall, S.W., and Kühn, H., 1986, Purification and properties of guanylate kinase from bovine retinas and rod outer segments. Eur. J. Biochem. 161: 551–556.PubMedCrossRefGoogle Scholar
  18. Hosoya, K., and Tomi, M., 2005, Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol. Pharm. Bull. 28: 1–8.PubMedCrossRefGoogle Scholar
  19. Item, C.B., Stöckler-Ipsiroglu, S., Stromberger, C., Muhl, A., Alessandri, M.G., Bianchi, M.C., Tosetti, M., Fornai, F., and Cioni, G., 2001, Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am. J. Hum. Genet. 69: 1127–1133.PubMedCrossRefGoogle Scholar
  20. Kahler, S.G., and Fahey, M.C., 2003, Metabolic disorders and mental retardation. Am. J. Med. Genet. C Semin. Med. Genet. 117: 31–41.PubMedCrossRefGoogle Scholar
  21. Klivenyi, P., Ferrante, R.J., Matthews, R.T., Bogdanov, M.B., Klein, A.M., Andreassen, O.A., Mueller, G., Wermer, M., Kaddurah-Daouk, R., and Beal, M.F., 1999, Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat. Med. 5: 347–350.PubMedCrossRefGoogle Scholar
  22. Lightman, S.L., Palestine, A.G., Rapoport, S.I., and Rechthand, E., 1987, Quantitative assessment of the permeability of the rat blood-retinal barrier to small water-soluble non-electrolytes. J. Physiol. 389: 483–490.PubMedGoogle Scholar
  23. Magistretti, P.J., 2006, Neuron-glia metabolic coupling and plasticity. J. Exp. Biol. 209: 2304–2311.PubMedCrossRefGoogle Scholar
  24. Marescau, B., De Deyn, P., Wiechert, P., Van Gorp, L., and Lowenthal, A., 1986, Comparative study of guanidino compounds in serum and brain of mouse, rat, rabbit, and man. J. Neurochem. 46: 717–720.PubMedCrossRefGoogle Scholar
  25. Marescau, B., Deshmukh, D.R., Kockx, M., Possemiers, I., Qureshi, I.A., Wiechert, P., and De Deyn, P.P., 1992, Guanidino compounds in serum, urine, liver, kidney, and brain of man and some ureotelic animals. Metabolism 41: 526–532.PubMedCrossRefGoogle Scholar
  26. Matthews, R.T., Ferrante, R.J., Klivenyi, P., Yang, L., Klein, A.M., Mueller, G., Kaddurah-Daouk, R., and Beal, M.F., 1999, Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol. 157: 142–149.PubMedCrossRefGoogle Scholar
  27. Matthews, R.T., Yang, L., Jenkins, B.G., Ferrante, R.J., Rosen, B.R., Kaddurah-Daouk, R., and Beal, M.F., 1998, Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J. Neurosci. 18: 156–163.PubMedGoogle Scholar
  28. Nakashima, T., Tomi, M., Katayama, K., Tachikawa, M., Watanabe, M., Terasaki, T., and Hosoya, K., 2004, Blood-to-retina transport of creatine via creatine transporter (CRT) at the rat inner blood-retinal barrier. J. Neurochem. 89: 1454–1461.PubMedCrossRefGoogle Scholar
  29. Nakashima, T., Tomi, M., Tachikawa, M., Watanabe, M., Terasaki, T., and Hosoya, K.I., 2005, Evidence for creatine biosynthesis in Müller glia. Glia 52: 47–52.PubMedCrossRefGoogle Scholar
  30. Ohtsuki, S., 2004, New aspects of the blood-brain barrier transporters; its physiological roles in the central nervous system. Biol. Pharm. Bull. 27: 1489–1496.PubMedCrossRefGoogle Scholar
  31. Ohtsuki, S., Kamiya, N., Hori, S., and Terasaki, T., 2005, Vascular endothelium-selective gene induction by Tie2 promoter/enhancer in the brain and retina of a transgenic rat. Pharm. Res. 22: 852–857.PubMedCrossRefGoogle Scholar
  32. Ohtsuki, S., Kikkawa, T., Hori, S., and Terasaki, T., 2006, Modulation and compensation of the mRNA expression of energy related transporters in the brain of glucose transporter 1-deficient mice. Biol. Pharm. Bull. 29: 1587–1591.PubMedCrossRefGoogle Scholar
  33. Ohtsuki, S., Tachikawa, M., Takanaga, H., Shimizu, H., Watanabe, M., Hosoya, K., and Terasaki, T., 2002, The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J. Cereb. Blood Flow Metab. 22: 1327–1335.PubMedCrossRefGoogle Scholar
  34. Pardridge, W.M., Boado, R.J., and Farrell, C.R., 1990, Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J. Biol. Chem. 265: 18035–18040.PubMedGoogle Scholar
  35. Persky, A.M., and Brazeau, G.A., 2001, Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol. Rev. 53: 161–176.PubMedGoogle Scholar
  36. Poitry-Yamate, C.L., Poitry, S., and Tsacopoulos, M., 1995, Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 15: 5179–5191.PubMedGoogle Scholar
  37. Poo-Arguelles, P., Arias, A., Vilaseca, M.A., Ribes, A., Artuch, R., Sans-Fito, A., Moreno, A., Jakobs, C., and Salomons, G., 2006, X-Linked creatine transporter deficiency in two patients with severe mental retardation and autism. J. Inherit. Metab. Dis. 29: 220–223.PubMedCrossRefGoogle Scholar
  38. Rauen, T., and Wiessner, M., 2000, Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS. Neurochem. Int. 37: 179–189.PubMedCrossRefGoogle Scholar
  39. Salomons, G.S., van Dooren, S.J., Verhoeven, N.M., Cecil, K.M., Ball, W.S., Degrauw, T.J., and Jakobs, C., 2001, X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am. J. Hum. Genet. 68: 1497–1500.PubMedCrossRefGoogle Scholar
  40. Saltarelli, M.D., Bauman, A.L., Moore, K.R., Bradley, C.C., and Blakely, R.D., 1996, Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev. Neurosci. 18: 524–534.PubMedGoogle Scholar
  41. Sather, W.A., and Detwiler, P.B., 1987, Intracellular biochemical manipulation of phototransduction in detached rod outer segments. Proc. Natl. Acad. Sci. USA 84: 9290–9294.PubMedCrossRefGoogle Scholar
  42. Schulze, A., 2003, Creatine deficiency syndromes. Mol. Cell. Biochem. 244: 143–150.PubMedCrossRefGoogle Scholar
  43. Shefner, J.M., Cudkowicz, M.E., Schoenfeld, D., Conrad, T., Taft, J., Chilton, M., Urbinelli, L., Qureshi, M., Zhang, H., Pestronk, A., Caress, J., Donofrio, P., Sorenson, E., Bradley, W., Lomen-Hoerth, C., Pioro, E., Rezania, K., Ross, M., Pascuzzi, R., Heiman-Patterson, T., Tandan, R., Mitsumoto, H., Rothstein, J., Smith-Palmer, T., MacDonald, D., and Burke, D., 2004, A clinical trial of creatine in ALS. Neurology 63: 1656–1661.PubMedGoogle Scholar
  44. Sipilä, I., Simell, O., and Arjomaa, P., 1980, Gyrate atrophy of the choroid and retina with hyperornithinemia. Deficient formation of guanidinoacetic acid from arginine. J. Clin. Invest. 66: 684–687.PubMedGoogle Scholar
  45. Sipilä, I., Valle, D., and Brusilow, S., 1992, Low guanidinoacetic acid and creatine concentrations in gyrate atrophy of choroids and retina (GA). In: Guanidino Compounds in Biology and Medicine (De Deyn, P.P., Marescau, B., Stalon, V., and Qureshi, I., eds.), John Libbey Ltd, London, pp 379–383.Google Scholar
  46. Sora, I., Richman, J., Santoro, G., Wei, H., Wang, Y., Vanderah, T., Horvath, R., Nguyen, M., Waite, S., Roeske, W.R., and et al., 1994, The cloning and expression of a human creatine transporter. Biochem. Biophys. Res. Commun. 204: 419–427.PubMedCrossRefGoogle Scholar
  47. Stöckler, S., Hanefeld, F., and Frahm, J., 1996, Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348: 789–790.PubMedCrossRefGoogle Scholar
  48. Stöckler, S., Holzbach, U., Hanefeld, F., Marquardt, I., Helms, G., Requart, M., Hanicke, W., and Frahm, J., 1994, Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr. Res. 36: 409–413.PubMedGoogle Scholar
  49. Stockler, S., Schutz, P.W., and Salomons, G.S., 2007, Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell. Biochem. 46: 149–166.PubMedGoogle Scholar
  50. Tachikawa, M., Fukaya, M., Terasaki, T., Ohtsuki, S., and Watanabe, M., 2004, Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur. J. Neurosci. 20: 144–160.PubMedCrossRefGoogle Scholar
  51. Takata, K., Kasahara, T., Kasahara, M., Ezaki, O., and Hirano, H., 1992, Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat. Invest. Ophthalmol. Vis. Sci. 33: 377–383.PubMedGoogle Scholar
  52. Terasaki, T., and Ohtsuki, S., 2005, Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: an overview of biology and methodology. NeuroRx 2: 63–72.PubMedCrossRefGoogle Scholar
  53. Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E., and Hosoya, K., 2003, New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov. Today 8: 944–954.PubMedCrossRefGoogle Scholar
  54. Vannas-Sulonen, K., Sipila, I., Vannas, A., Simell, O., and Rapola, J., 1985, Gyrate atrophy of the choroid and retina. A five-year follow-up of creatine supplementation. Ophthalmology 92: 1719–1727.PubMedGoogle Scholar
  55. Voat, D., and Voat, J.G., 1995, Biochemistry, 2nd edn. John Wiley & Sons, Inc, Toronto, Canada.Google Scholar
  56. Wallimann, T., Wegmann, G., Moser, H., Huber, R., and Eppenberger, H.M., 1986, High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc. Natl. Acad. Sci. USA 83: 3816–3819.PubMedCrossRefGoogle Scholar
  57. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H.M., 1992, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ’phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281: 21–40.PubMedGoogle Scholar
  58. Wang, Y.E., Esbensen, P., and Bentley, D., 1998, Arginine kinase expression and localization in growth cone migration. J. Neurosci. 18: 987–998.PubMedGoogle Scholar
  59. Wyss, M., and Kaddurah-Daouk, R., 2000, Creatine and creatinine metabolism. Physiol. Rev. 80: 1107–1213.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Masanori Tachikawa
    • 1
  • Ken-Ichi Hosoya
    • 1
  • Sumio Ohtsuki
    • 2
    • 3
  • Tetsuya Terasaki
    • 2
    • 3
  1. 1.Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyama 930-0194Japan
  2. 2.Graduate School of Pharmaceutical SciencesTohoku UniversitySendai 980-8578Japan
  3. 3.SORST, Japan Science and Technology AgencyJapan

Personalised recommendations