Expression and Function of Agat, Gamt and CT1 in the Mammalian Brain

  • Olivier Braissant
  • Claude Bachmann
  • Hugues Henry
Part of the Subcellular Biochemistry book series (SCBI, volume 46)

Abstract

In mammals, creatine is taken up from the diet and can be synthesized endogenously by a two-step mechanism involving the enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT). Creatine (Cr) is taken up by cells through a specific transporter, CT1. While the major part of endogenous synthesis of Cr is thought to occur in kidney, pancreas and liver, the brain widely expresses AGAT, GAMT and CT1, both during development and in adulthood. The adult central nervous system (CNS) has a limited capacity to take up Cr from periphery, and seems to rely more on its endogenous Cr synthesis. In contrast, the embryonic CNS might be more dependent on Cr supply from periphery than on endogenous synthesis. This review will focus on the expression and function of AGAT, GAMT and CT1 in the mammalian CNS, both during development and in adulthood. Emphasis will also be placed on their specific roles in the different cell types of the brain, to analyze which brain cells are responsible for the CNS capacity of (i) endogenous Cr synthesis and (ii) Cr uptake from the periphery, and which brain cells are the main Cr consumers. The potential role of CT1 as guanidinoacetate transporter between “AGAT-only” and “GAMT-only” expressing cells will also be explored

Keywords

AGAT Glutathione Retina Arginine Luminal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta, M.L., Kalloniatis, M., and Christie, D.L., 2005, Creatine transporter localization in developing and adult retina: importance of creatine to retinal function. Am. J. Physiol. Cell Physiol. 289: C1015–C1023.PubMedCrossRefGoogle Scholar
  2. Almeida, L.S., Salomons, G.S., Hogenboom, F., Jakobs, C., and Schoffelmeer, A.N., 2006, Exocytotic release of creatine in rat brain. Synapse 60: 118–123.PubMedCrossRefGoogle Scholar
  3. Anselm, I.M., Alkuraya, F.S., Salomons, G.S., Jakobs, C., Fulton, A.B., Mazumdar, M., Rivkin, M., Frye, R., Poussaint, T.Y., and Marsden, D., 2006, X-linked creatine transporter defect: a report on two unrelated boys with a severe clinical phenotype. J. Inherit. Metab. Dis. 29: 214–219.PubMedCrossRefGoogle Scholar
  4. Battini, R., Alessandri, M.G., Leuzzi, V., Moro, F., Tosetti, M., Bianchi, M.C., and Cioni, G., 2006, Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: early treatment can prevent phenotypic expression of the disease. J. Pediatr. 148: 828–830.PubMedCrossRefGoogle Scholar
  5. Battini, R., Leuzzi, V., Carducci, C., Tosetti, M., Bianchi, M.C., Item, C.B., Stöckler-Ipsiroglu, S., and Cioni, G., 2002, Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol. Genet. Metab. 77: 326–331.PubMedCrossRefGoogle Scholar
  6. Bizzi, A., Bugiani, M., Salomons, G.S., Hunneman, D.H., Moroni, I., Estienne, M., Danesi, U., Jakobs, C., and Uziel, G., 2002, X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann. Neurol. 52: 227–231.PubMedCrossRefGoogle Scholar
  7. Braissant, O., Villard, A., Henry, H., Speer, O., Wallimann, T., and Bachmann, C., 2005a, Synthesis and transport of creatine in the central nervous system. In Clinical and molecular aspects of defects in creatine and polyol metabolism, Jakobs, C., and Stöckler-Ipsiroglu, S., eds. (SPS Verlagsgesellschaft, Heilbronn, Germany), pp. 49–63.Google Scholar
  8. Braissant, O., Gotoh T., Loup, M., Mori M., and Bachmann, C., 2001a, Differential expression of the cationic amino acid transporter 2(B) in the adult rat brain. Mol. Brain Res. 91: 189–195.CrossRefGoogle Scholar
  9. Braissant, O., Gotoh, T., Loup, M., Mori, M., and Bachmann, C., 1999, L-arginine uptake, the citrulline-NO cycle and arginase II in the rat brain: an in situ hybridization study. Mol. Brain Res. 70: 231–241.PubMedCrossRefGoogle Scholar
  10. Braissant, O., Henry, H., Loup, M., Eilers, B., and Bachmann, C., 2001b, Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Mol. Brain Res. 86: 193–201.CrossRefGoogle Scholar
  11. Braissant, O., Henry, H., Villard, A.M., Speer, O., Wallimann, T., and Bachmann, C., 2005b, Creatine synthesis and transport during rat embryogenesis: Spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev. Biol. 5: 9.CrossRefGoogle Scholar
  12. Braissant, O., Henry, H., Villard, A.M., Zurich, M.G., Loup, M., Eilers, B., Parlascino, G., Matter, E., Boulat, O., Honegger, P., and Bachmann, C., 2002, Ammonium-induced impairment of axonal growth is prevented through glial creatine. J. Neurosci. 22: 9810–9820.PubMedGoogle Scholar
  13. Cecil, K.M., Salomons, G.S., Ball, W.S., Jr., Wong, B., Chuck, G., Verhoeven, N.M., Jakobs, C., and DeGrauw, T.J., 2001, Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann. Neurol. 49: 401–404.PubMedCrossRefGoogle Scholar
  14. Daly, M.M., 1985, Guanidinoacetate methyltransferase activity in tissues and cultured cells. Arch. Biochem. Biophys. 236: 576–584.PubMedCrossRefGoogle Scholar
  15. Davis, B.M., Miller, R.K., Brent, R.L., and Koszalka, T.R., 1978, Materno-fetal transport of creatine in the rat. Biol. Neonate 33: 43–54.PubMedCrossRefGoogle Scholar
  16. DeGrauw, T.J., Salomons, G.S., Cecil, K.M., Chuck, G., Newmeyer, A., Schapiro, M.B., and Jakobs, C., 2002, Congenital creatine transporter deficiency. Neuropediatrics 33: 232–238.PubMedCrossRefGoogle Scholar
  17. Dickmeis, T., Rastegar, S., Aanstad, P., Clark, M., Fischer, N., Plessy, C., Rosa, F., Korzh, V., and Strahle, U., 2001, Expression of brain subtype creatine kinase in the zebrafish embryo. Mech. Dev. 109: 409–412.PubMedCrossRefGoogle Scholar
  18. Dringen, R., Verleysdonk, S., Hamprecht, B., Willker, W., Leibfritz, D., and Brand, A., 1998, Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J. Neurochem. 70: 835–840.PubMedCrossRefGoogle Scholar
  19. Dziegielewska, K.M., Ek, J., Habgood, M.D., and Saunders, N.R., 2001, Development of the choroid plexus. Microsc. Res. Tech. 52: 5–20.PubMedCrossRefGoogle Scholar
  20. Engelhardt, B., 2003, Development of the blood-brain barrier. Cell Tissue Res. 314: 119–129.PubMedCrossRefGoogle Scholar
  21. Galbraith, R.A., Furukawa, M., and Li, M., 2006, Possible role of creatine concentrations in the brain in regulating appetite and weight. Brain Res. 1101: 85–91.PubMedCrossRefGoogle Scholar
  22. Ganesan, V., Johnson, A., Connelly, A., Eckhardt, S., and Surtees, R.A., 1997, Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatr. Neurol. 17: 155–157.PubMedCrossRefGoogle Scholar
  23. Guimbal, C. and Kilimann, M.W., 1993, A Na+-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J. Biol. Chem. 268: 8418–8421.PubMedGoogle Scholar
  24. Happe, H.K. and Murrin, L.C., 1995, In situ hybridization analysis of CHOT1, a creatine transporter, in the rat central nervous system. J. Comp. Neurol. 351: 94–103.PubMedCrossRefGoogle Scholar
  25. Hemmer, W., Zanolla, E., Furter-Graves, E.M., Eppenberger, H.M., and Wallimann, T., 1994, Creatine kinase isoenzymes in chicken cerebellum: specific localization of brain-type creatine kinase in Bergmann glial cells and muscle-type creatine kinase in Purkinje neurons. Eur. J. Neurosci. 6: 538–549.PubMedCrossRefGoogle Scholar
  26. Holtzman, D., McFarland, E., Moerland, T., Koutcher, J., Kushmerick, M.J., and Neuringer, L.J., 1989, Brain creatine phosphate and creatine kinase in mice fed an analogue of creatine. Brain Res. 483: 68–77.PubMedCrossRefGoogle Scholar
  27. Item, C.B., Stöckler-Ipsiroglu, S., Stromberger, C., Muhl, A., Alessandri, M.G., Bianchi, M.C., Tosetti, M., Fornai, F., and Cioni, G., 2001, Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am. J. Hum. Genet. 69: 1127–1133.PubMedCrossRefGoogle Scholar
  28. Kaldis, P., Hemmer, W., Zanolla, E., Holtzman, D., and Wallimann, T., 1996, ‘Hot spots’ of creatine kinase localization in brain: cerebellum, hippocampus and choroid plexus. Dev. Neurosci. 18: 542–554.PubMedGoogle Scholar
  29. Koszalka, T.R., Jensh, R.P., and Brent, R.L., 1975, Placental transport of creatine in the rat. Proc. Soc. Exp. Biol. Med. 148: 864–869.PubMedGoogle Scholar
  30. Kreis, R., Hofmann, L., Kuhlmann, B., Boesch, C., Bossi, E., and Huppi, P.S., 2002, Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 48: 949–958.PubMedCrossRefGoogle Scholar
  31. Lee, H., Kim, J.H., Chae, Y.J., Ogawa, H., Lee, M.H., and Gerton, G.L., 1998, Creatine synthesis and transport systems in the male rat reproductive tract. Biol. Reprod. 58: 1437–1444.PubMedCrossRefGoogle Scholar
  32. Lyons, G.E., Muhlebach, S., Moser, A., Masood, R., Paterson, B.M., Buckingham, M.E., and Perriard, J.C., 1991, Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Development 113: 1017–1029.PubMedGoogle Scholar
  33. Mercimek-Mahmutoglu, S., Stoeckler-Ipsiroglu, S., Adami, A., Appleton, R., Araujo, H.C., Duran, M., Ensenauer, R., Fernandez-Alvarez, E., Garcia, P., Grolik, C., Item, C.B., Leuzzi, V., Marquardt, I., Muhl, A., Saelke-Kellermann, R.A., Salomons, G.S., Schulze, A., Surtees, R., van der Knaap, M.S., Vasconcelos, R., Verhoeven, N.M., Vilarinho, L., Wilichowski, E., and Jakobs, C., 2006, GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology 67: 480–484.PubMedCrossRefGoogle Scholar
  34. Miller, T.J., Hanson, R.D., and Yancey, P.H., 2000, Developmental changes in organic osmolytes in prenatal and postnatal rat tissues. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 125: 45–56.PubMedCrossRefGoogle Scholar
  35. Möller, A. and Hamprecht, B., 1989, Creatine transport in cultured cells of rat and mouse brain. J. Neurochem. 52: 544–550.PubMedCrossRefGoogle Scholar
  36. Nakashima, T., Tomi, M., Katayama, K., Tachikawa, M., Watanabe, M., Terasaki, T., and Hosoya, K., 2004, Blood-to-retina transport of creatine via creatine transporter (CRT) at the rat inner blood-retinal barrier. J. Neurochem. 89: 1454–1461.PubMedCrossRefGoogle Scholar
  37. Nakashima, T., Tomi, M., Tachikawa, M., Watanabe, M., Terasaki, T., and Hosoya, K., 2005, Evidence for creatine biosynthesis in Muller glia. GLIA 52: 47–52.PubMedCrossRefGoogle Scholar
  38. Neu, A., Neuhoff, H., Trube, G., Fehr, S., Ullrich, K., Roeper, J., and Isbrandt, D., 2002, Activation of GABAA receptors by guanidinoacetate: a novel pathophysiological mechanism. Neurobiol. Dis. 11: 298–307.PubMedCrossRefGoogle Scholar
  39. Ohtsuki, S., Tachikawa, M., Takanaga, H., Shimizu, H., Watanabe, M., Hosoya, K., and Terasaki, T., 2002, The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J. Cereb. Blood Flow Metab. 22: 1327–1335.PubMedCrossRefGoogle Scholar
  40. Perasso, L., Cupello, A., Lunardi, G.L., Principato, C., Gandolfo, C., and Balestrino, M., 2003, Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res. 974: 37–42.PubMedCrossRefGoogle Scholar
  41. Pisano, J.J., Abraham, D., and Udenfriend, S., 1963, Biosynthesis and disposition of \UPgamma-guanidinobutyric acid in mammalian tissues. Arch. Biochem. Biophys. 100: 323–329.CrossRefGoogle Scholar
  42. Poo-Arguelles, P., Arias, A., Vilaseca, M.A., Ribes, A., Artuch, R., Sans-Fito, A., Moreno, A., Jakobs, C., and Salomons, G., 2006, X-Linked creatine transporter deficiency in two patients with severe mental retardation and autism. J. Inherit. Metab. Dis. 29: 220–223.PubMedCrossRefGoogle Scholar
  43. Salomons, G.S., van Dooren, S.J., Verhoeven, N.M., Cecil, K.M., Ball, W.S., Degrauw, TJ, and Jakobs, C., 2001, X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am. J. Hum. Genet. 68: 1497–1500.PubMedCrossRefGoogle Scholar
  44. Salomons, G.S., van Dooren, S.J., Verhoeven, N.M., Marsden, D., Schwartz, C., Cecil, K.M., DeGrauw, T.J., and Jakobs, C., 2003, X-linked creatine transporter defect: an overview. J. Inherit. Metab. Dis. 26: 309–318.PubMedCrossRefGoogle Scholar
  45. Saltarelli, M.D., Bauman, A.L., Moore, K.R., Bradley, C.C., and Blakely, R.D., 1996, Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev. Neurosci. 18: 524–534.PubMedGoogle Scholar
  46. Sandell, L.L., Guan, X.J., Ingram, R., and Tilghman, S.M., 2003, Gatm, a creatine synthesis enzyme, is imprinted in mouse placenta. Proc. Natl. Acad. Sci. U. S. A. 100: 4622–4627.PubMedCrossRefGoogle Scholar
  47. Schloss, P., Mayser, W., and Betz, H., 1994, The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem. Biophys. Res. Commun. 198: 637–645.PubMedCrossRefGoogle Scholar
  48. Schmidt, A., Marescau, B., Boehm, E.A., Renema, W.K., Peco, R., Das, A., Steinfeld, R., Chan, S., Wallis, J., Davidoff, M., Ullrich, K., Waldschutz, R., Heerschap, A., De Deyn, P.P., Neubauer, S., and Isbrandt, D., 2004, Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum. Mol. Genet. 13: 905–921.PubMedCrossRefGoogle Scholar
  49. Schulze, A., 2003, Creatine deficiency syndromes. Mol. Cell. Biochem. 244: 143–150.PubMedCrossRefGoogle Scholar
  50. Schulze, A., Ebinger, F., Rating, D., and Mayatepek, E., 2001, Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation. Mol. Genet. Metab. 74: 413–419.PubMedCrossRefGoogle Scholar
  51. Schulze, A., Hess, T., Wevers, R., Mayatepek, E., Bachert, P., Marescau, B., Knopp, M.V., De Deyn, P.P., Bremer, H.J., and Rating, D., 1997, Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism. J. Pediatr. 131: 626–631.PubMedCrossRefGoogle Scholar
  52. Schulze, A., Hoffmann, G.F., Bachert, P., Kirsch, S., Salomons, G.S., Verhoeven, N.M., and Mayatepek, E., 2006, Presymptomatic treatment of neonatal guanidinoacetate methyltransferase deficiency 1. Neurology 67: 719–721.PubMedCrossRefGoogle Scholar
  53. Schulze, A., Mayatepek, E., Bachert, P., Marescau, B., De Deyn, P.P., and Rating, D., 1998, Therapeutic trial of arginine restriction in creatine deficiency syndrome. Eur. J. Pediatr. 157: 606–607.PubMedCrossRefGoogle Scholar
  54. Segal, M.B., 2000, The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell. Mol. Neurobiol. 20: 183–196.PubMedCrossRefGoogle Scholar
  55. Stöckler, S., Holzbach, U., Hanefeld, F., Marquardt, I., Helms, G., Requart, M., Hänicke, W., and Frahm, J., 1994, Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr. Res. 36: 409–413.PubMedGoogle Scholar
  56. Stöckler, S., Isbrandt, D., Hanefeld, F., Schmidt, B., and Von Figura, K., 1996, Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am. J. Hum. Genet. 58: 914–922.PubMedGoogle Scholar
  57. Stockler, S., Schutz, P.W., and Salomons, G.S., 2007, Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell. Biochem. 46: 149–166.PubMedGoogle Scholar
  58. Stromberger, C., Bodamer, O.A., and Stöckler-Ipsiroglu, S., 2003, Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J. Inherit. Metab. Dis. 26: 299–308.PubMedCrossRefGoogle Scholar
  59. Sykut-Cegielska, J., Gradowska, W., Mercimek-Mahmutoglu, S., and Stockler-Ipsiroglu, S., 2004, Biochemical and clinical characteristics of creatine deficiency syndromes. Acta Biochim. Pol. 51: 875–882.PubMedGoogle Scholar
  60. Tachikawa, M., Fukaya, M., Terasaki, T., Ohtsuki, S., and Watanabe, M., 2004, Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur. J. Neurosci. 20: 144–160.PubMedCrossRefGoogle Scholar
  61. Van Pilsum, J.F., Stephens, G.C., and Taylor, D., 1972, Distribution of creatine, guanidinoacetate and enzymes for their biosynthesis in the animal kingdom. Implications for phylogeny. Biochem. J. 126: 325–345.Google Scholar
  62. Walker, J.B., 1979, Creatine: biosynthesis, regulation, and function. Adv. Enzymol. Relat. Areas Mol. Biol. 50: 177–242.PubMedCrossRefGoogle Scholar
  63. Wallimann, T. and Hemmer, W., 1994, Creatine kinase in non-muscle tissues and cells. Mol. Cell. Biochem. 133–134: 193–220.PubMedCrossRefGoogle Scholar
  64. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H.M., 1992, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281: 21–40.PubMedGoogle Scholar
  65. Wang, Y. and Li, S.J., 1998, Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 39: 28–33.PubMedCrossRefGoogle Scholar
  66. Wang, Y.E., Esbensen, P., and Bentley, D., 1998, Arginine kinase expression and localization in growth cone migration. J. Neurosci. 18: 987–998.PubMedGoogle Scholar
  67. Whittingham, T.S., Douglas, A., and Holtzman, D., 1995, Creatine and nucleoside triphosphates in rat cerebral gray and white matter. Metab. Brain Dis. 10: 347–352.PubMedCrossRefGoogle Scholar
  68. Wyss, M. and Kaddurah-Daouk, R., 2000, Creatine and creatinine metabolism. Physiol. Rev. 80: 1107–1213.PubMedGoogle Scholar
  69. Zugno, A.I., Scherer, E.B., Schuck, P.F., Oliveira, D.L., Wofchuk, S., Wannmacher, C.M., Wajner, M.,and Wyse, A.T., 2006, Intrastriatal administration of guanidinoacetate inhibits Na+, K+-ATPase and creatine kinase activities in rat striatum. Metab. Brain Dis. 21: 41–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Olivier Braissant
    • 1
  • Claude Bachmann
    • 1
  • Hugues Henry
    • 1
  1. 1.Clinical Chemistry LaboratoryCentre Hospitalier Universitaire Vaudois and University of LausanneCH-1011 LausanneSwitzerland

Personalised recommendations