Skip to main content

Convolutive Blind Source Separation for Audio Signals

  • Chapter

Part of the book series: Signals and Communication Technology ((SCT))

In this era of ever-improving communications technologies, we have become used to conversing with others across the globe. Invariably, a real-time telephone conversation begins with a microphone or other audio recording device. Noise in the environment can corrupt our speech signal as it is being recorded, making it harder to both use and understand further down the communications pathway. Other talkers in the environment add their own auditory interference to the conversation. Recent work in advanced signal processing has resulted in new and promising technologies for recovering speech signals that have been corrupted by speech-like and other types of interference. Termed blind source separation methods, or BSS methods for short, these techniques rely on the diversity provided by the collection of multichannel data by an array of distant microphones (sensors) in room environments. The practical goal of these methods is to produce a set of output signals which are much more intelligible and listenable than the mixture signals, without any prior information about the signals being separated, the room reverberation characteristics, or the room impulse response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Sato, “A method for self recovering equalization,” IEEE Trans. Communi-cations, vol. 23, no. 6, pp. 679-682, June 1975.

    Article  Google Scholar 

  2. D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems.” IEEE Trans. Communications, vol. 28, no. 11, pp. 1867-1875, Nov. 1980.

    Article  Google Scholar 

  3. A. Benveniste, M. Goursat, and G. Ruget, “Robust identification of a non-minimum phase system - Blind adjustment of a linear equalizer in data com-munications,” IEEE Trans. Automatic Control, vol. 25, no. 3, pp. 385-399, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  4. O. Shalvi and E. Weinstein, “New criteria for blind deconvolution of nonmin-imum phase systems (channels),” IEEE Trans. Inform. Theory, vol. 36, no. 2, pp. 312-321, Mar. 1990.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. A. Wiggins, “Minimum entropy deconvolution,” Geoexploration, vol. 16, no. 1-2, pp. 21-35, 1978.

    Article  Google Scholar 

  6. H. B. Barlow, “The coding of sensory messages,” in Current Problems in Animal Behaviour, W. H. Thorpe and O. L. Zangwill, Eds. Cambridge University Press, 1960, pp. 331-360.

    Google Scholar 

  7. T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley Series in Telecommunications, 1991.

    Google Scholar 

  8. R. Linsker, “Local synaptic learning rules suffice to maximize mutual informa-tion in a linear-network,” Neural Computation, vol. 4, no. 5, pp. 691-702, Sept. 1992.

    Article  Google Scholar 

  9. ——, “A local learning rule that enables information maximization for arbitrary input distributions,” Neural Computation, vol. 9, no. 8, pp. 1661-1665, Nov. 1997.

    Google Scholar 

  10. J.-P. Nadal and N. Para, “Non-linear neurons in the low noise limit: A factorial code maximizes information transfer,” Network, vol. 4, pp. 565-581, 1994.

    Article  Google Scholar 

  11. A. Bell and T. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, pp. 1129-1159,1995.

    Article  Google Scholar 

  12. L. Tong, Y. Inouye, and R.-W. Liu, “Waveform-preserving blind estimation of multiple independent sources,” IEEE Trans. Signal Processing, vol. 41, no. 7, pp. 2461-2470, July 1993.

    Article  MATH  Google Scholar 

  13. L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals. Prentice-Hall Signal Processing Series, 1993.

    Google Scholar 

  14. H. Buchner, R. Aichner, and W. Kellermann, “Blind source separation for convolutive mixtures exploiting nongaussianity, nonwhiteness and nonstation-arity,” in Conf. Rec. IEEE intl. Workshop on Acoustic Echo and Noise Control (IWAENC), Kyoto, Japan, Sept. 2003, pp. 275-278.

    Google Scholar 

  15. W. B. Davenport, Jr., “A study of speech probability distributions,” Tech. Rep. 148, Research Laboratory of Electronics, Massachusetts Inst. of Technology, Cambridge, MA, Aug. 1950.

    Google Scholar 

  16. S. C. Douglas, “Blind signal separation and blind deconvolution,” in Handbook of Neural Network Signal Processing, Y.-H. Hu and J.-N. Hwang, Eds. New York: Wiley, 2001, ch. 7.

    Google Scholar 

  17. T. W. Lee, M. Girolami, A. J. Bell, and T. J. Sejnowski, “A unifying information-theoretic framework for independent component analysis,” Computers Mathematics Appl., vol. 39, no. 11, pp. 1-21, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.-F. Cardoso, “Blind signal separation: Statistical principles,” Proc. of the IEEE, vol. 86, no. 10, pp. 2009-2025, Oct. 1998.

    Article  Google Scholar 

  19. S. Amari, T. P. Chen, and A. Cichocki, “Stability analysis of learning al-gorithms for blind source separation,” Neural Networks, vol. 10, no. 8, pp. 1345-1351, Nov. 1997.

    Article  Google Scholar 

  20. S. Amari, A. Cichocki, and H. Yang, “A new learning algorithm for blind signal separation,” in Advances in Neural Information Processing Systems, vol. 8, pp. 757-763, 1996.

    Google Scholar 

  21. S. Amari, “Natural gradient works efficiently in learning,” Neural Computation, vol. 10, no. 2, pp. 251-276, Feb. 1998.

    Article  MathSciNet  Google Scholar 

  22. S. Amari, S. C. Douglas, A. Chichocki, and H. H. Yang, “Multichannel blind de-convolution and equalization using the natural gradient,” in Proc. IEEE Work-shop Signal Proc. Adv. Wireless Comm., Paris, France, 1997, pp. 101-104.

    Google Scholar 

  23. S. C. Douglas, H. Sawada, and S. Makino, “Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters,” IEEE Trans. Speech Audio Processing, vol. 13, no. 1, pp. 92-104, Jan. 2005.

    Article  Google Scholar 

  24. L. X. Yuan, W. W. Wang, and J. A. Chambers, “Variable step-size sign nat-ural gradient algorithm for sequential blind source separation,” IEEE Signal Processing Lett., vol. 12, no. 8, pp. 589-592, Aug. 2005.

    Article  Google Scholar 

  25. S. C. Douglas and M. Gupta, “Scaled natural gradient algorithms for instan-taneous and convolutive blind source separation,” IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 2, pp. 637-640, Apr. 2007.

    Google Scholar 

  26. N. Delfosse and P. Loubaton, “Adaptive blind separation of independent sources - A deflation approach,” Signal Processing, vol. 45, no. 1, pp. 59-83, July 1995.

    Article  MATH  Google Scholar 

  27. G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. The John Hopkins University Press, 1996.

    Google Scholar 

  28. A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis. Wiley Series on Adaptive and Learning Systems, 2001.

    Google Scholar 

  29. A. Hyvarinen and E. Oja, “A fast fixed-point algorithm for independent com-ponent analysis,” Neural Computation, vol. 9, no. 7, pp. 1483-1492, Oct. 1997.

    Article  Google Scholar 

  30. P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice-Hall, 1992.

    Google Scholar 

  31. S. C. Douglas, “An adaptive constraint method for paraunitary filter banks with applications to spatio-temporal subspace tracking,” Accepted for publication in EURASIP J. Applied Signal Processing.

    Google Scholar 

  32. ——, “The singular value manifold and numerical stabilization of algorithms with orthogonality constraints,” in Proc. IEEE Workshop Sensor Array, Boston, MA, July 2006.

    Google Scholar 

  33. C. W. Therrien, Discrete Random Signals and Statistical Signal Processing. Prentice Hall, 1992.

    Google Scholar 

  34. L. Molgedey and H. G. Schuster, “Separation of a mixture of independent signals using time-delayed correlations,” Physical Review Letters, vol. 72, no. 23, pp. 3634-3637, June 1994.

    Article  Google Scholar 

  35. A. Belouchrani, K. AbedMeraim, J. F. Cardoso, and E. Moulines, “A blind source separation technique using second-order statistics,” IEEE Trans. Signal Processing, vol. 45, no. 2, pp. 434-444, Feb. 1997.

    Article  Google Scholar 

  36. N. Murata, S. Ikeda, and A. Ziehe, “An approach to blind source separa-tion based on temporal structure of speech signals,” Neurocomputing, vol. 41, pp. 1-24, Oct. 2001.

    Article  MATH  Google Scholar 

  37. L. Parra and C. Spence, “Convolutive blind separation of non-stationary sources,” IEEE Trans. Speech Audio Processing, vol. 8, no. 3, pp. 320-327, May 2000.

    Article  Google Scholar 

  38. S. Haykin, Adaptive Filter Theory, 4th ed. Prentice Hall, 2001.

    Google Scholar 

  39. P. Smaragdis, “Blind separation of convolved mixtures in the frequency do-main,” Neurocomputing, vol. 22, no. 1-3, pp. 21-34, Nov. 1998.

    Article  MATH  Google Scholar 

  40. B. D. V. Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP. Mag., pp. 4-24, Apr. 1988.

    Google Scholar 

  41. J. F. Cardoso and A. Soloumiac, “Blind beamforming for non-Gaussian sig-nals,” IEEE Trans. Signal Processing, vol. 140, no. 6, pp. 362-370, Dec. 1993.

    Google Scholar 

  42. S. kurita, H. Saruwatari, S. Kajita, K. Takeda, and F. Itakura, “Evaluation of blind signal separation method using directivity pattern under reverberant conditions,” in Proc. IEEE ICASSP, vol. 5, Istanbul, Turkey, June 5-9, 2000, pp. 3140-3143.

    Google Scholar 

  43. H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise method for solving the permutation problem of frequency-domain blind source separa-tion,” IEEE Trans. Speech Audio Processing, vol. 12, no. 5, pp. 530-538, Sept. 2004.

    Article  Google Scholar 

  44. H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, and K. Shikano, “Blind source separation based on a fast-convergence algorithm combining ICA and beamforming,” IEEE Trans. Audio Speech Language Processing, vol. 14, no. 2, pp. 666-678, Mar. 2006.

    Article  Google Scholar 

  45. D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques. Prentice Hall, 1993.

    Google Scholar 

  46. L. C. Parra and C. V. Alvino, “Geometric source separation: Merging con-volutive source separation with geometric beamforming,” IEEE Trans. Speech Audio Processing, vol. 10, no. 6, pp. 352-362, Sept. 2002.

    Article  Google Scholar 

  47. S. C. Douglas, H. Sawada, and S. Makino, “A spatio-temporal FastICA algo-rithm for separating convolutive mixtures,” IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 5, Mar. 2005, pp. 165-168.

    Google Scholar 

  48. S. C. Douglas, M. Gupta, H. Sawada, and S. Makino, “Spatio-temporal FastICA algorithms for the blind separation of convolutive mixtures,” IEEE Trans. Audio Speech Language Processing, vol. 15, no. 5, pp. 1511-1520, July 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Douglas, S.C., Gupta, M. (2007). Convolutive Blind Source Separation for Audio Signals. In: Makino, S., Sawada, H., Lee, TW. (eds) Blind Speech Separation. Signals and Communication Technology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6479-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6479-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6478-4

  • Online ISBN: 978-1-4020-6479-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics