Advertisement

An Examination of a Continuous Flow Diffusion Chamber's Performance: Implications for Field Measurements of Ice Nuclei

  • Mathews S. Richardson
  • Anthony J. Prenni
  • Paul J. DeMott
  • Sonia M. Kreidenweis
Conference paper

Recent field studies using the aircraft version of the Colorado State University Continuous Flow Diffusion Chamber (CFDC) indicate that the kinetic aspects of diffusional growth (both of water and ice) and ice nucleation, coupled with the limited aerosol residence time in the chamber, may result in a delay in the detection of the onset of homogeneous freezing. Through a series of controlled laboratory studies, we confirmed that the onset of homogeneous freezing of ammonium sulfate particles larger than ~100 nm was not detected at conditions consistent with expectations from theory. Current work involves modeling of the fluid dynamical and thermodynamical fields through the chamber, isolating particle trajectories from these fields, and running a microphysical model along these trajectories. The microphysical model is initialized with a distribution of dry particles of specified composition and the processes simulated include deliquescence, diffusional growth of droplets and crystals, and homogeneous freezing.

Keywords

Diffusional Growth Evaporation Region Control Laboratory Study Recent Field Study Thermodynamical Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers, D.C., DeMott, P.J., Kreidenweis, S.M., and Chen, Y., J. Atmos. Oceanic Technol., 18, 725–741 (2001).CrossRefADSGoogle Scholar
  2. 2.
    DeMott, P.J., Cziczo, D.J., Prenni, A.J., Murphy, D.M., Kreidenweis, S.M., Thomson, D.S., Borys, R., and Rogers, D.C., Proc. Natl. Acad. Sci., 100, 14655–14660 (2003).CrossRefADSGoogle Scholar
  3. 3.
    Richardson, M.S., DeMott, P.J., Kreidenweis, S.M., Cziczo, D.J., Dunlea, E.J., Jimenez, J.L., Thomson, D.S., Ashbaugh, L.L., Borys, R.D., Westphal, D.L., Casuccio, G.S., and Lersch, T.L., J. Geophys. Res., 112, D02209 (2007).CrossRefGoogle Scholar
  4. 4.
    Koop, T., Luo, B., Tsias, A., and Peter, T., Nature, 406, 611–614 (2000).CrossRefADSGoogle Scholar
  5. 5.
    Rogers, D.C., Atmos. Res., 22, 149–181 (1988).CrossRefADSGoogle Scholar
  6. 6.
    Buck, A.L., J. Appl. Meteor., 20, 1527–1532 (1981).CrossRefADSGoogle Scholar
  7. 7.
    Onasch, T.B., Siefert, R.L., Brooks, S.D., Prenni, A.J., Murray, B., Wilson, M.A., and Tolbert, M.A., J. Geophys. Res., 104, 21317 (1999).CrossRefADSGoogle Scholar
  8. 8.
    Clegg, S.L., Brimblecombe, P., and Wexler, A.S., J. Chem. Phys. A, 102, 2137–2154 (1998).CrossRefGoogle Scholar
  9. 9.
    Pruppacher, H.R., and Klett, J.D., Microphysics of Clouds and Precipitation, Boston: Kluwer (1997).Google Scholar
  10. 10.
    Shaw, R.A. and D. Lamb, J. Chem. Phys., 111, 10659–10663 (1999).CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Mathews S. Richardson
    • 1
  • Anthony J. Prenni
    • 1
  • Paul J. DeMott
    • 1
  • Sonia M. Kreidenweis
    • 1
  1. 1.Department of Atmospheric ScienceColorado State UniversityFort CollinsUSA

Personalised recommendations