Skip to main content

Monte Carlo Simulations on Heterogeneous Nucleation I: The Point Where the Classical Theory Fails

  • Conference paper
Nucleation and Atmospheric Aerosols

We have performed Monte Carlo simulations of homogeneous and heterogeneous nucleations of Lennard–Jones argon clusters. We interpreted the simulation results using the major concept posing a difference between the homogeneous and heterogeneous classical nucleation theories, the contact parameter. Our results show that the concept describes the cluster–substrate interaction surprisingly well, even for very small molecular clusters. The use of the classical theory concept results in an underestimation of the heterogeneous nucleation rate by 2–3 orders of magnitude. The main contribution is induced by the failure of the classical theory of homogeneous nucleation to predict the energy involved in bringing one molecule from the vapor to the cluster for clusters containing less than approximately 15 molecules.

Keywords Heterogeneous nucleation, Monte Carlo simulations, argon

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kulmala, M., Lehtinen, K.E.J., and Laaksonen, A., Atmos. Chem. Phys., 6, 787–793 (2006).

    Article  ADS  Google Scholar 

  2. Volmer, M., Kinetik der Phasenbildung, Dresden: Steinkopff (1939).

    Google Scholar 

  3. Volmer, M. and Weber, A., Z. Phys. Chem., 119, 277–301 (1925).

    Google Scholar 

  4. Wagner, P.E., Kaller, D., Vrtala, A., Lauri, A., Kulmala, M., and Laaksonen, A., Phys. Rev. E, 67, 021605 (2003).

    Article  ADS  Google Scholar 

  5. Lee, J.K., Barker, J.A., and Abraham, F.F., J. Chem. Phys., 58, 3166–3180 (1973).

    Article  ADS  Google Scholar 

  6. Fladerer, A. and Strey, R., J. Chem. Phys., 124, 164710 (2006).

    Article  ADS  Google Scholar 

  7. Zapadinsky, E., Lauri, A., and Kulmala, M., J. Chem. Phys., 122, 114709 (2005).

    Article  ADS  Google Scholar 

  8. Lauri, A., Merikanto, J., Zapadinsky, E., and Vehkamäki, H., Atmos. Res., 82, 489–502 (2006).

    Article  Google Scholar 

  9. Bennett, C.H., J. Comput. Phys., 22, 245–268 (1976).

    Article  ADS  Google Scholar 

  10. Hale, B.N., Aust. J. Phys., 49, 425–434 (1996).

    ADS  Google Scholar 

  11. Hale, B.N. and Ward, R., J. Stat. Phys., 28, 487–495 (1982).

    Article  ADS  Google Scholar 

  12. Stillinger, F.H., J. Chem. Phys., 38, 1486–1494 (1963).

    Article  ADS  Google Scholar 

  13. Lauri, A., Zapadinsky, E., Vehkamäki, H., and Kulmala, M., J. Chem. Phys., 125, 164712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Kulmala, M., Vehkamäki, H., Lauri, A., Zapadinsky, E., Merikanto, J. (2007). Monte Carlo Simulations on Heterogeneous Nucleation I: The Point Where the Classical Theory Fails. In: O'Dowd, C.D., Wagner, P.E. (eds) Nucleation and Atmospheric Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6475-3_65

Download citation

Publish with us

Policies and ethics