Critical Cluster Content in High-pressure Binary Nucleation: Compensation Pressure Effect

  • Vitaly I. Kalikmanov
  • Dzmitry G. Labetski
Conference paper

Nucleation experiments in binary (a-b) mixtures, when component a is supersaturated and b (carrier gas) is undersaturated, reveal that for some mixtures at high pressures the a-content of the critical cluster dramatically decreases with the pressure contrary to the expectations based on the Classical Nucleation Theory. We show that this phenomenon is a manifestation of the dominant role of the unlike interactions at high pressures resulting in the negative partial molar volume of component a in the vapor phase beyond the compensation pressure. The analysis is based on the Pressure Nucleation Theorem (PNT) for multicomponent systems which is invariant to a nucleation model.

Keywords Binary nucleation, Nucleation theorem, cluster composition, compensation pressure effect


Partial Molar Volume Virial Coefficient Multicomponent Mixture Critical Cluster Classical Nucleation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heist, R.H. and He, H., J. Phys. Chem. Ref. Data, 23, 781 (1994); Katz, J.L., Fisk, J.L., and Chakarov, V., in: Nucleation and Atmospheric Aerosols, edited by N. Fukuta and P.E. Wagner, Hampton: Deepak, p. 11 (1992); Looijmans, K.N.H., Kriesels, P.C., and van Dongen, M.E.H., Exp. Fluids, 15, 61 (1993); Looijmans, K.N.H., Ph.D. thesis, Eindhoven University (1995); Looijmans, K.N.H. and van Dongen, M.E.H., Exp. Fluids, 23, 54 (1997).Google Scholar
  2. 2.
    Looijmans, K.N.H., Luijten, C.C.M., and van Dongen, M.E.H., J. Chem. Phys., 103, 1714 (1995); Luijten, C.C.M., Ph.D. thesis, Eindhoven University (1999); Peeters, P., Ph.D. thesis, Eindhoven University (2002); Luijten, C.C.M., Peeters, P., and van Dongen, M.E.H., J. Chem. Phys., 111, 8535 (1999); Labetski, D., Ph.D. thesis Eindhoven University (2007).Google Scholar
  3. 3.
    Oxtoby, D.W. and Kashchiev, D., J. Chem. Phys., 100, 7665 (1994).CrossRefADSGoogle Scholar
  4. 4.
    Hill, T.L., Thermodynamics of Small Systems, Dover, NY. (1994); Kashchiev, D., J. Chem. Phys., 125, 014502 (2006).Google Scholar
  5. 5.
    Kalikmanov, V.I. and Labetski, D.G., Phys. Rev. Lett., 98, 085701 (2007).CrossRefADSGoogle Scholar
  6. 6.
    Kalikmanov, V.I., J. Chem. Phys., 124, 124505 (2006).CrossRefADSGoogle Scholar
  7. 7.
    Poling, B.E., Prausnitz, J.M., and O’Connell, J.P., The Properties of Gases and Liquids, 5th edn. NY: McGraw-Hill (2001).Google Scholar
  8. 8.
    Viisanen, Y., Wagner, P.E., and Strey, R., J. Chem. Phys., 108, 4257 (1998).CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Vitaly I. Kalikmanov
    • 1
  • Dzmitry G. Labetski
    • 2
  1. 1.Twister Supersonic Gas SolutionsNetherlands
  2. 2.Department of Applied PhysicsEindhoven University of TechnologyNetherlands

Personalised recommendations