Skip to main content

Argon Nucleation in a Cryogenic Nucleation Pulse Chamber

  • Conference paper
Nucleation and Atmospheric Aerosols

Homogeneous nucleation of argon has been measured with a cryogenic nucleation pulse chamber. Due to the very fast growth of the argon droplets nucleation and growth could not be decoupled. However, we can present a systematic set of onset data for argon measured in a temperature range from 42 to 58K and for vapor pressures from 0.3 to 10 kPa. Using the most recent expressions for temperature-dependent vapor pressures, surface tensions and densities predictions by the classical Becker-Döring nucleation theory are calculated. A rather high deviation of up to 26 orders of magnitude between theory and experiment is found. As in the case of other systems (e.g., water, alcohols, and alkanes) classical theory shows a stronger temperature dependence than experimentally observed.

Keywords Homogeneous nucleation, onset measurements

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson, C.R.T., Philos. Trans. R. Soc. London Ser. A, 189, 871 (1897).

    Google Scholar 

  2. Heist, R.H. and He, H. J., J. Phys. Ref. Data, 23, 781 (1994).

    Article  ADS  Google Scholar 

  3. Becker, R. and Döring, W., Ann. Phys., 24, 719 (1935).

    Article  MATH  Google Scholar 

  4. Girshick, S.L. and Chiu, C.-P., J. Chem. Phys., 93, 1273 (1990).

    Article  ADS  Google Scholar 

  5. Reiss, H., Kegel, W.K., and Katz, J.L., Phys. Rev. Lett., 78(23), 4506 (1997).

    Article  ADS  Google Scholar 

  6. Reiss, H., Kegel, W.K., and Katz, J.L., J. Phys. Chem. A, 102(44), 8548 (1998).

    Article  Google Scholar 

  7. Schenter, G.K., Kathmann, S.M., and Garret, B.C., Phys. Rev. Lett., 82(17), 3484 (1999).

    Article  ADS  Google Scholar 

  8. Senger, B., Schaaf, P., Corti, D.S., Bowles, R.K., Voegel, J.-C., and Reiss, H., J. Chem. Phys., 110(13), 6421 (1999).

    Article  ADS  Google Scholar 

  9. Senger, B., Schaaf, P., Corti, D.S., Bowles, R.K., Pointu, D., Voegel, J.-C., and Reiss, H., J. Chem. Phys., 110(13), 6438 (1999).

    Article  ADS  Google Scholar 

  10. Zeng, X. C. and Oxtoby, D.W., J. Chem. Phys., 94(6), 4472 (1991).

    Article  ADS  Google Scholar 

  11. Oxtoby, D.W., J. Phys.: Condensed Matter, 4, 7627 (1992).

    Article  ADS  Google Scholar 

  12. Talanquer, V. and Oxtoby, D.W., J. Chem. Phys., 100(7), 5190 (1994).

    Article  ADS  Google Scholar 

  13. Laasonen, K., Wonczak, S., Strey, R., and Laaksonen, A., J. Chem. Phys., 113(21), 9741–9747 (2000).

    Article  ADS  Google Scholar 

  14. Toxvaerd, S., J. Chem. Phys., 115(19), 8913 (2001).

    Article  ADS  Google Scholar 

  15. Pierce, T., Sherman, P.M., and McBride, D.D., Astronautica Acta, 16, 1 (1971).

    Google Scholar 

  16. Lewis, J.W.L., and Williams, W.D., NTIS-Report No. AD782445 (1974).

    Google Scholar 

  17. Stein, G.D., NTIS-Report No. ADA007357 (1974).

    Google Scholar 

  18. Wu, B.J.C., Wegener, P.P., and Stein, G.D., J. Chem. Phys., 69(4), 1776 (1978).

    Article  ADS  Google Scholar 

  19. Matthew, M.W. and Steinwandel, J., J. Aerosol Sci., 14(6), 755 (1983).

    Article  Google Scholar 

  20. Steinwandel, J. and Buchholz, T., Aerosol Science and Technology, 3, 71 (1984).

    Article  Google Scholar 

  21. Zahoransky, R.A., Höschele, J., and Steinwandel, J., J. Chem. Phys., 103(20), 9038 (1995).

    Article  ADS  Google Scholar 

  22. Zahoransky, R.A., Höschele, J., and Steinwandel, J., J. Chem. Phys., 110, 8842 (1999).

    Article  ADS  Google Scholar 

  23. Fladerer, A. and Strey, R., J. Chem Phys., 124(16) (2006).

    Google Scholar 

  24. Iland, K., Wölk, J., Kashchiev, D., and Strey, R., J. Chem Phys., to be submitted (2007).

    Google Scholar 

  25. Volmer, M., Kinetik der Phasenbildung, , Dresden, Germany: Steinkopff (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Strey, R., Wölk, J., Iland, K. (2007). Argon Nucleation in a Cryogenic Nucleation Pulse Chamber. In: O'Dowd, C.D., Wagner, P.E. (eds) Nucleation and Atmospheric Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6475-3_33

Download citation

Publish with us

Policies and ethics