Homogeneous Nucleation Rate in Supersaturated Water Vapor

  • V. Ždímal
  • David Brus
Conference paper

The rate of homogeneous nucleation in supersaturated vapors of water was studied experimentally using a static diffusion chamber. Helium was used as a carrier gas. Droplets grown by condensation were observed by illuminating the chamber across its whole height with a flattened laser beam and recording digital images of droplets trajectories. Image analysis was used to determine local values of nucleation rate from droplets “starting positions”. Rates were studied in the range 3 × 10−1 − 3 × 102 cm−3 s−1 at four isotherms: 290, 300, 310, and 320 K. Measured isothermal dependencies of nucleation rate of water on supersaturation were compared with prediction of classical theory of homogeneous nucleation.

Keywords Homogeneous nucleation, static diffusion chamber, supersaturation, condensation, water


Nucleation Rate Atmospheric Aerosol Homogeneous Nucleation Liquid Pool Classical Nucleation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, E. and Kassner, J., J. Colloid Interface Sci., 30, 81 (1969).CrossRefGoogle Scholar
  2. Brus, D., Hyvärinen, A.-P., Ždímal, V., Lihavainen, H., J. Chem. Phys., 122, 214506 (2005).CrossRefADSGoogle Scholar
  3. Heist, R.H. and He, H., J. Phys. Chem. Ref. Data, 23, 781 (1994).ADSCrossRefGoogle Scholar
  4. Heist, R.H. and Reiss, H., J. Chem. Phys., 59, 665 (1973).CrossRefADSGoogle Scholar
  5. Katz, J.L., J. Chem. Phys., 52, 4733 (1970).CrossRefADSGoogle Scholar
  6. Mikheev, V.B., Irving, P.M., Laulainen, N.S., Barlow, S.E., Pervukhin, V.V., J. Chem. Phys., 113, 10772 (2002).CrossRefGoogle Scholar
  7. Miller, R., Anderson, R.J., Kassner, J.K., and Hagen, D.E., J. Chem. Phys., 78, 3204 (1983).CrossRefADSGoogle Scholar
  8. Schmitt, J.L., Brunt, K.V., and Doster G.J., in Wölk et al., p. 51 (2000).Google Scholar
  9. Smolík, J. and Ždímal, V., Aerosol Sci. Technol., 20, 127 (1994).CrossRefGoogle Scholar
  10. Šonka, M., Hlaváč, V., and Boyle, R.D., Image Processing, Analysis and Machine Vision, Boston, MA: PWS (1998).Google Scholar
  11. Viisanen, Y., Strey, R., and Reiss, H., J. Chem. Phys., 112, 8205 (2000).CrossRefADSGoogle Scholar
  12. Viisanen, Y., Strey, R., and Reiss, H., J. Chem. Phys., 99, 4680 (1993).CrossRefADSGoogle Scholar
  13. Wölk, J. and Strey, R., J. Phys. Chem. B, 105, 11683 (2001).CrossRefGoogle Scholar
  14. Wölk, J., Viisanen, Y., Strey, R., Proceedings of the 15th International Conference on Nucleation and Atmospheric Aerosols, edited by B. Hale and M. Kulmala (American Institute of Physics, Melville, NY, 2000), Vol. 7, p. 7.Google Scholar
  15. Ždímal, V., Smolík, J., Hopke, P.K., Matas, J., in Wölk et al., p. 311 (2000).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • V. Ždímal
    • 1
  • David Brus
    • 1
  1. 1.Laboratory of Aerosol Chemistry and PhysicsInstitute of Chemical Process FundamentalsCzech Republic

Personalised recommendations