Advertisement

Three-Dimensional Stability of Vortices in a Stratified Fluid

  • Pantxika Otheguy
  • Axel Deloncle
  • Paul Billant
  • Jean-Marc Chomaz
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 4)

Abstract

The three-dimensional linear stabilities of vertically uniform shear flows and vortex configurations (dipole, couple, von Karman street and double symmetric row) are investigated through experiments, theoretical and numerical analysis when the fluid is stratified. For strong stratification, all the vortex configurations are unstable to the zigzag instability associated to vertically sheared horizontal translations that develop spontaneously. The most unstable wavelength decreases with the strength of the stratification, whereas the maximum growthrate is independent of the stratification and solely proportional to the strain felt by the vortex core. Experiments and direct numerical simulation show that the zigzag instability eventually decorrelates the flow on the vertical. The zigzag instability is therefore a generic instability that constrains turbulent energy cascade in stratified fluid and contributes to structure oceanic and atmospheric flows.

Keywords

stratified and rotating flows zigzag instability von Karman street dipole turbulence cascade 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riley JJ, Metcalfe RW, Weissman MA (1981) Proc AIP Conf Nonlinear prop-erties of internal waves (ed West BJ), 79-112Google Scholar
  2. 2.
    Lilly DK (1983) J Atmos Sci 40:749-761CrossRefGoogle Scholar
  3. 3.
    Lindborg E (1999) J Fluid Mech 388:259-288MATHCrossRefGoogle Scholar
  4. 4.
    Billant P, Chomaz J-M (2000) J Fluid Mech 419:29-63MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Billant P, Chomaz J-M (2001) Phys Fluids 13:1645-1651CrossRefMathSciNetGoogle Scholar
  6. 6.
    Godeferd FS, Cambon C (1994) Phys Fluids 6:2084-2100MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Smith LM, Waleffe F (2002) J Fluid Mech 451:145-168MATHCrossRefGoogle Scholar
  8. 8.
    Godeferd FS, Staquet C (2003) J Fluid Mech 486:115-159MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Liechtenstein L, Godeferd FS, Cambon C (2005) J Turbul 6:115-159CrossRefMathSciNetGoogle Scholar
  10. 10.
    Meunier P, Leweke T (2001) Phys Fluids 13:2747-2750CrossRefGoogle Scholar
  11. 11.
    Dritschel DG, de la Torre Juárez M (1996) J Fluid Mech 328:129-160MATHCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Pantxika Otheguy
    • 1
  • Axel Deloncle
    • 1
  • Paul Billant
    • 1
  • Jean-Marc Chomaz
    • 1
  1. 1.Laboratoire d’hydrodynamique (LadHyX)CNRS - École PolytechniquePalaiseau cedexFrance

Personalised recommendations