On Intermittency in Shell Models and in Turbulent Flows

  • Itamar Procaccia
  • Roberto Benzi
  • Luca Biferale
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 4)

Abstract

We propose an approach to study the old-standing problem of the anomaly of the scaling exponents of nonlinear models of turbulence. We achieve this by constructing, for any given nonlinear model, a linear model of passive advection of an auxiliary field whose anomalous scaling exponents are the same as the scaling exponents of the nonlinear problem. The statistics of the auxiliary linear model are dominated by ‘Statistically Preserved Structures’ which are associated with statistical conservation laws. The latter can be used for example to determine the value of the anomalous scaling exponent of the second order structure function. The approach is equally applicable to shell models and to the Navier-Stokes equations, and it demonstrates that the scaling exponents of these nonlinear models are indeed anomalous. In order to adress the universality of these nonlinear model we study the statistical properties of a semi-infinite chain of passive vectors advecting each other and study the scaling exponents at the fixed point of this chain.

Keywords

turbulence anomalous exponents statistically preserved structures shell models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frisch U (1995) Turbulence, Cambridge University PressGoogle Scholar
  2. 2.
    Bohr T, Jensen MH, Paladin G, Vulpiani A (1998) Dynamical systems approach to turbulence, Cambridge University PressGoogle Scholar
  3. 3.
    Biferale L (2003) Ann Rev Fluid Mech 35:441–468CrossRefMathSciNetGoogle Scholar
  4. 4.
    Gledzer EB (1973) Dokl Akad Nauk SSSR 20:1046–1048Google Scholar
  5. 5.
    Yamada M, Ohkitani K (1987) J Phys Soc Jpn 56:4210–4213CrossRefGoogle Scholar
  6. 6.
    Jensen MH, Paladin G, Vulpiani A (1991) Phys Rev A 43:798–805CrossRefGoogle Scholar
  7. 7.
    Pissarenko D, Biferale L, Courvoisier D, Frisch U, Vergassola M (1993) Phys. Fluids A 5:2533–2538CrossRefGoogle Scholar
  8. 8.
    Procaccia I, Gat O, Zeitak R (1995) Phys Rev E 51:1148–1154CrossRefMathSciNetGoogle Scholar
  9. 9.
    L’vov VS, Podivilov E, Pomyalov A, Procaccia I, Vandembroucq D (1998) Phys Rev E 58:1811–1822CrossRefMathSciNetGoogle Scholar
  10. 10.
    Benzi R, Biferale L, Parisi G (1993) Physica D 65:163–171MATHCrossRefGoogle Scholar
  11. 11.
    Benzi R, Biferale L, Toschi F (2001) Eur Phys J B 24:125–133CrossRefGoogle Scholar
  12. 12.
    Benzi R, Biferale L, Sbragaglia M, Toschi F (2004) Phys Rev E 68:046304CrossRefGoogle Scholar
  13. 13.
    Angheluta L, Benzi R, Biferale L, Procaccia I, Toschi F (2006) Phys Rev Lett 97:160601CrossRefGoogle Scholar
  14. 14.
    Ditlevsen P (1996) Phys Rev E 54:985–988CrossRefGoogle Scholar
  15. 15.
    Biferale L, Pierotti D, Toschi F (1998) Phys Rev E 57:R2515–R2518CrossRefGoogle Scholar
  16. 16.
    Falkovich G, Gawedzki K, Vergassola M (2001) Rev Mod Phys 73:913–975CrossRefMathSciNetGoogle Scholar
  17. 17.
    Arad I, Biferale L, Celani A, Procaccia I, Vergassola M (2001) Phys Rev Lett 87:164502CrossRefGoogle Scholar
  18. 18.
    Cohen Y, Gilbert T, Procaccia I (2002) Phys Rev E 65:026314CrossRefGoogle Scholar
  19. 19.
    Benzi R, Levant B, Procaccia I, Titi E (2007) Nonlinearity 20:1431MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Arad I, Procaccia I (2001) Phys Rev E 63:056302CrossRefGoogle Scholar
  21. 21.
    Celani A, Vergassola M (2001) Phys Rev Lett 86:424–427CrossRefGoogle Scholar
  22. 22.
    Cohen Y, Pomyalov A, Procaccia I (2003) Phys Rev E 68:036303CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Itamar Procaccia
    • 1
  • Roberto Benzi
    • 2
  • Luca Biferale
    • 2
  1. 1.The Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Dept. of Physics and INFNUniversity of Rome “Roma Tor Vergata”RomeItaly

Personalised recommendations