Wavelet-Based Extraction of Coherent Vortices from High Reynolds Number Homogeneous Isotropic Turbulence

  • Katsunori Yoshimatsu
  • Naoya Okamoto
  • Kai Schneider
  • Marie Farge
  • Yukio Kaneda
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 4)


A wavelet-based method to extract coherent vortices is applied to data of three-dimensional incompressible homogeneous isotropic turbulence with the Taylor micro-scale Reynolds number 471 in order to examine contribution of the vortices to statistics on the turbulent flow. We observe a strong scale-by-scale correlation between the velocity field induced by them and the total velocity field over the scales retained by the data. We also find that the vortices almost preserve statistics of nonlinear interactions of the total flow over the inertial range.


wavelet coherent vortices high Reynolds number turbulence energy transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farge M (1989) J Fluid Mech 206:433-462.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Farge M (1992) Ann Rev Fluid Mech 24:395-457.CrossRefMathSciNetGoogle Scholar
  3. 3.
    van den Berg JC (Ed.) (1999) Wavelets in Physics. Cambridge University Press.Google Scholar
  4. 4.
    Farge M, Schneider K (2002) New Trends in Turbulence. Les Houches 2000, Vol. 74 (Eds. Lesieur M, Yaglom A, David F), Springer: 449-503.Google Scholar
  5. 5.
    Addison PS (2002) The Illustrated Wavelet Transform Handbook. Institute of Physics Publishing, Bristol and Philadelphia.MATHCrossRefGoogle Scholar
  6. 6.
    Farge M, Schneider K (2006) In Encyclopedia of Mathematical Physics (Eds. Françoise JP, Naber G, Tsun TS), Elsevier:408-420.Google Scholar
  7. 7.
    Farge M, Schneider K, Kevlahan N (1999) Phys Fluids 11:2187-2201.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Farge M, Pellegrino G, Schneider K (2001) Phys Rev Lett 87:45011-45014.CrossRefGoogle Scholar
  9. 9.
    Farge M, Schneider K, Pellegrino G, Wray A, Rogallo B (2003) Phys Fluids 15: 2886-2896.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Farge M, Schneider K (2001) Flow Turbul Comb 66: 393-426.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Schneider K, Farge M, Pellegrino G, Rogers M (2005) J Fluid Mech 534: 39-66.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yokokawa M, Itakura K, Uno A, Ishihara T, Kaneda Y (2002) Proc IEEE/ACM SC2002 Conf, Baltimore;
  13. 13.
    Kaneda Y, Ishihara T, Yokokawa M, Itakura K, Uno A (2003) Phys Fluids 15:L21-L24.CrossRefGoogle Scholar
  14. 14.
    Mallat S (1998) A Wavelet Tour of Signal Processing. Academic Press.Google Scholar
  15. 15.
    Donoho D, Johnstone I (1994) Biometrika 81:425-455.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Schneider K, Farge M, Azzalini A, Ziuber J (2006) J Turbul 7(44).Google Scholar
  17. 17.
    Azzalini A, Farge M, Schneider K (2005) Appl Comput Harm Anal 18: 177-185.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Meneveau C (1991) J Fluid Mech 232:469-520.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Katsunori Yoshimatsu
    • 1
  • Naoya Okamoto
    • 1
  • Kai Schneider
    • 2
  • Marie Farge
    • 3
  • Yukio Kaneda
    • 1
  1. 1.Department of Computational Science and Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.MSNM-CNRS & CMIUniversité de ProvenceMarseille Cedex 13France
  3. 3.LMD-IPSL-CNRSEcole Normale SupérieureParis Cedex 05France

Personalised recommendations