Some Contributions and Challenges of Computational Turbulence Research

Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 4)


The contributions of numerical simulations to the changes that have taken place during the past twenty years in our understanding of near-wall turbulence, and of the dissipative scales of isotropic flows, are briefly reviewed. It is argued that both problems have moved over this time from empirical observations to relatively coherent theoretical models, and that much of the reason is that they could be simulated cheaply enough to subject them to conceptual experiments. This required a lapse of ten to fifteen years after they were first computed, over which time the cost of simulations decreased by a factor of 100. Simulations of the logarithmic layer and of the inertial energy cascade and now beginning to be affordable. Both are still too expensive to experiment with them, but it is argued that, if history can be taken as a guide, both problems will become routinely computable in the next decade, and that we will then be able to attack their dynamics.


turbulence direct simulations boundary layers isotropic turbulence computational methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tennekes H, Lumley JL (1972) A first course in turbulence. MIT PressGoogle Scholar
  2. 2.
    Brown GL, Roshko A (1974) J Fluid Mech 64:775–816CrossRefGoogle Scholar
  3. 3.
    Kim J, Moin P, Moser RD (1987) J Fluid Mech 177:133–166zbMATHCrossRefGoogle Scholar
  4. 4.
    Robinson SK (1991) Ann Rev Fluid Mech 23:601–639CrossRefGoogle Scholar
  5. 5.
    Kim HT, Kline SJ, Reynolds WC (1971) J Fluid Mech 50:133–160CrossRefGoogle Scholar
  6. 6.
    Jiménez J, Moin P (1991) J Fluid Mech 225:221–240CrossRefGoogle Scholar
  7. 7.
    Hamilton JM, Kim J, Waleffe F (1995) J Fluid Mech 287:317–348zbMATHCrossRefGoogle Scholar
  8. 8.
    Jiménez J, Pinelli A (1999) J Fluid Mech 389:335–359zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jiménez J, Kawahara G, Simens MP, del Álamo JC (2004) The near-wall structures of turbulent wall flows. In: Kida S, (ed.) IUTAM Symp. on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics, 53–70, SpringerGoogle Scholar
  10. 10.
    Jiménez J, Kawahara G, Simens MP, Nagata M, Shiba M (2005) Phys Fluids 17:015105CrossRefGoogle Scholar
  11. 11.
    Kawahara G, Kida S (2001) J Fluid Mech 449:291–300zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Toh S, Itano T (2003) J Fluid Mech 481:67–76zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hoyas S, Jiménez J (2006) Phys Fluids 18:011702CrossRefGoogle Scholar
  14. 14.
    Flores O, Jiménez J (2006) J Fluid Mech 566:357–376zbMATHCrossRefGoogle Scholar
  15. 15.
    Kolmogorov AN (1941) Dokl Akad Nauk SSSR 30:301–305. Reprinted in Proc. R. Soc. London. A 434, 9–13 (1991)MathSciNetGoogle Scholar
  16. 16.
    Batchelor GK, Townsend AA (1949) Proc Roy Soc London A 199:238–255zbMATHCrossRefGoogle Scholar
  17. 17.
    Kuo AY, Corrsin S (1972) J Fluid Mech 56:447–479CrossRefGoogle Scholar
  18. 18.
    Siggia ED (1994) J Fluid Mech 107:375–406CrossRefGoogle Scholar
  19. 19.
    She Z, Jackson E, Orszag SA (1990) Nature 344:226–228CrossRefGoogle Scholar
  20. 20.
    Vincent A, Meneguzzi M (1991) J Fluid Mech 225:1–25zbMATHCrossRefGoogle Scholar
  21. 21.
    Jiménez J, Wray AA, Saffman PG, Rogallo RS (1993) J Fluid Mech 255:65–90zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Douady S, Couder Y, Brachet ME (1991) Phys Rev Lett 67:983–986CrossRefGoogle Scholar
  23. 23.
    Belin F, Tabeling P, Willaime H (1996) Physica D 93:52–63zbMATHCrossRefGoogle Scholar
  24. 24.
    Tanahashi M, Iwase S, Miyauchi T (2001) J Turbul 2:1–17CrossRefMathSciNetGoogle Scholar
  25. 25.
    Tanahashi M, Kang SJ, Miyamoto T, Shiokawa S, Miyauchi T (2004) Int J Heat Fluid Flow 25:331–340CrossRefGoogle Scholar
  26. 26.
    Passot T, Politano H, Sulem PL, Angilella JR, Meneguzzi M (1995) J Fluid Mech 282:313–338zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Verzicco R, Jiménez J, Orlandi P (1995) J Fluid Mech 299:367–388zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tabeling P, Willaime H (2002) Phys Rev E 65:066301CrossRefMathSciNetGoogle Scholar
  29. 29.
    Kaneda Y, Ishihara T, Yokokawa M, Itakura K, Uno A (2003) Phys Fluids 15:L21–L24CrossRefGoogle Scholar
  30. 30.
    Jiménez J, Wray AA (1998) J Fluid Mech 373:255–285zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Yakhot V, Sreenivasan KR (2005) J Stat Phys 121:823–841zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    van Veen L, Kida S, Kawahara G (2006) Fluid Dyn Res 38:19–46zbMATHCrossRefGoogle Scholar
  33. 33.
    Kida S (1985) J Phys Soc Japan 54:2132–2136CrossRefGoogle Scholar
  34. 34.
    Pelz RB (2001) J Fluid Mech 444:299–320zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Klewicki JC, Metzger MM, Kelner E, Thurlow E (1995) Phys Fluids 7:857–863CrossRefGoogle Scholar
  36. 36.
    DeGraaf DB, Eaton JK (2000) J Fluid Mech 422:319–346CrossRefGoogle Scholar
  37. 37.
    Jiménez J, Moser RD (2000) AIAA J 38:605–612CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.School of AeronauticsUniversidad PolitécnicaMadridSpain
  2. 2.Centre for Turbulence ResearchStanford Univ.USA

Personalised recommendations