Advertisement

Scale Interactions and Non-Local Flux in Hydrodynamic Turbulence

  • Pablo D. Mininni
  • Alexandros Alexakis
  • Annick Pouquet
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 4)

Abstract

Direct numerical simulations of hydrodynamical turbulence are performed in the presence of a large-scale forcing up to Taylor-based Reynolds numbers of 800 for a Taylor-Green flow and 1000 for ABC forcing. Statistics on the triadic interactions responsible for the transfer of energy, and on their integrated counterparts are obtained from simulations with a turbulent steady state integrated for more than ten eddy turn-over times. The maximum resolution of the runs performed on regular grids are 10243 points. It is shown that the energy transfer is local but at the highest resolution as much as 20% of it comes from non-local interactions involving widely separated scales, with a particular emphasis on the forcing scale k0/-1. The scaling of the ratio of nonlocal to local energy flux with Reynolds number is found to be a power law.

Keywords

turbulence high-Reynolds-number flows direct numerical simulations isotropic and homogeneous turbulence scale interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Domaradzki JA (1988) Phys Fluids 31:2747-2749; Yeung PK, Brasseur JG (1991) Phys Fluids A 3:884-897; Brasseur JG, Wei CH (1994) Phys Fluids 6:842-870; Kishida K et al (1999) Phys Rev Lett 83:5487-5490MATHCrossRefGoogle Scholar
  2. 2.
    Waleffe F (1992) Phys Fluids A 4:350-363; Eyink GL (2005) Physica D 207:91- 116; Verma MK et al (2005) Pramana J Phys 65:297-310MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Stewart RW (1969) Radio Sci 4:1269-1278CrossRefGoogle Scholar
  4. 4.
    Shen X, Warhaft Z (2000) Phys Fluids 12:2976-2989; Staicu A, van de Water W (2003) Phys Rev Lett 90:094501CrossRefGoogle Scholar
  5. 5.
    Poulain C, Mazellier N, Chevillard L, Gagne Y, Baudet C (2006) Eur Phys J B 53:219-224CrossRefGoogle Scholar
  6. 6.
    Pumir A, Shraiman BI (1995) Phys Rev Lett 75:3114-3117CrossRefGoogle Scholar
  7. 7.
    Alexakis A, Mininni PD, Pouquet A (2005) Phys Rev Lett 95:264503CrossRefGoogle Scholar
  8. 8.
    Mininni PD, Alexakis A, Pouquet A (2006) Phys Rev E 74:016303CrossRefGoogle Scholar
  9. 9.
    Clyne J, Rast M (2005) A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. In: Erbacher RF et al (eds) Visualization and data analysis 2005 SPIE, Bellingham Wash (URL: http://www.vapor.ucar.edu)
  10. 10.
    Taylor GI, Green AE (1937) Proc Roy Soc Lond Ser A 158:499-512; Brachet ME et al (1983) J Fluid Mech 130:411-452CrossRefGoogle Scholar
  11. 11.
    Arnol'd VI (1965) C R Acad Sci Paris 261:17-21 (1965); Galloway D, Frisch U (1984) Geophys Astrophys Fluid Dyn 29:13-18MATHMathSciNetGoogle Scholar
  12. 12.
    Pumir A, Shraiman BI (1995) Phys Rev Lett 75:3114-3117; Shen X, Warhaft Z (2000) Phys Fluids 12:2976-2989CrossRefGoogle Scholar
  13. 13.
    Alexakis A, Mininni PD, Pouquet A (2006) Phys Rev E 72:046301; Mininni PD, Alexakis A, Pouquet A (2006) Phys Rev E 72:046302CrossRefMathSciNetGoogle Scholar
  14. 14.
    Mininni PD, Alexakis A, Pouquet A (2006) J Plasmas Phys (in press), arXiv:physics/0510053Google Scholar
  15. 15.
    Alexakis A, Mininni PD, Pouquet A (2006) Astrophys J 640:335-343CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Pablo D. Mininni
    • 1
  • Alexandros Alexakis
    • 1
  • Annick Pouquet
    • 1
  1. 1.NCARBoulderUSA

Personalised recommendations