Skip to main content

Methodologies for Mapping Land Cover/Land Use and its Change

  • Chapter
Advances in Land Remote Sensing

Mapping and identifying land cover/land use and its change is the most important, as well as the most widely researched, topic in remote sensing. Land cover/land use has been used extensively to derive a number of biophysical variables, such as vegetation index, biomass, and carbon content (see other chapters). More importantly, land cover/land use pattern and its change reflect the underlying natural and/or social processes, thus providing essential information for modeling and understanding many different phenomena on the Earth. Knowledge of land cover/land use and its change is also critical to effective planning and management of natural resources.

Mapping land cover/land use accurately and efficiently via remote sensing requires good image classification methods. Unfortunately, there are numerous factors (e.g., image resolution and atmospheric condition) that could affect the effectiveness and accuracy of the classification algorithms. Different land cover/land use classification methods may be needed for different problems under different environmental conditions, making generalization and hence automation of the image classification process across time and space extremely difficult. As a result, new and sophisticated classification methods designed to improve the classification process continue to appear in the literature (e.g., Jensen, 2005; Gong, 2006). Newer approaches such as fuzzy classification, artificial neural network, and object-based classification have been developed and successfully applied (Definiens, 2004; Benz et al., 2004). However, these methods require extensive training and human supervision. We are still far from being able to develop a common framework to successfully identify a variety of features in different landscapes and to generalize and automate the classification process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baskent EZ, Jordan GA (1955) Characterizing spatial structure of forest landscapes. Can. J. Forest Res. 25:1830–1849

    Article  Google Scholar 

  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58:239–258

    Article  Google Scholar 

  • Bian L (2003) Retrieving urban objects using a wavelet transform approach. Photogramm. Eng. Remote Sens. 69(2):133–141

    Google Scholar 

  • Briggs JM, Nellis JM (1991) Seasonal variation of heterogeneity in the tallgrass prairie: A quanti tative measure using remote sensing. Photogramm. Eng. Remote Sens. 57:407–411

    Google Scholar 

  • Cao C, Lam NSN (1997) Understanding the scale and resolution effects in remote sensing and GIS. In: DA Quattrochi, MF Goodchild (eds), Scale in remote sensing and GIS. Lewis Publishers, Boca Raton, FL, pp 57–72

    Google Scholar 

  • Carr JR (1999) Classification of digital image texture using variograms. In: PM Atkinson, NJ Tate (eds), Advances in remote sensing and GIS analysis. Wiley, London, pp 135–146

    Google Scholar 

  • Carr JR, de Miranda FP (1998) The semivariogram in comparison to the co-occurrence matrix for classification of image texture. IEEE Trans. Geosci. Remote Sens. 36(6):1945–1952

    Article  Google Scholar 

  • Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comput. Geosci. 12(5):713–722

    Article  Google Scholar 

  • Clausi DA, Jobanputra R (2006) Preserving boundaries for image texture segmentation using grey level co-occurring probabilities. Pattern Recog. 39(2):234–245

    Article  Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Methuen, New York

    Google Scholar 

  • Coppin PR, Bauer ME (1966) Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews 13:207–234

    Google Scholar 

  • Crews-Meyer KA (2002) Characterizing landscape dynamism using paneled-pattern metrics. Photogramm. Eng. Remote Sens. 68(10):1031–1040

    Google Scholar 

  • Dale MRT (2000) Lacunarity analysis of spatial pattern: a comparison. Landscape Ecol. 15(5):467–478

    Article  Google Scholar 

  • Daubechies I (1990) The wavelet transform, time/frequency localization and signal analysis. IEEE Trans. Inf. Theory 36:961–1005

    Article  Google Scholar 

  • De Pietri DE (1995) The spatial configuration of vegetation as an indicator of landscape degrada tion due to livestock enterprises in Argentina. J. Appl. Ecol. 32:857–865

    Article  Google Scholar 

  • Definiens AG (2004) eCognition User Guide (accessed May 2006)

    Google Scholar 

  • Dong P (2000) Test of a new lacunarity estimation method for image texture analysis. Int. J. Remote Sens. 21(17):3369–3373

    Article  Google Scholar 

  • Dunn CP, Sharpe DM, Guntenspergen GR, Stearns F, Yang Z (1991) Methods of analyzing temporal changes in landscape pattern. In: MG Turner, RH Gardner (eds), Quantitative methods in landscape ecology. The analysis and interpretation of landscape heterogeneity. Springer, New York

    Google Scholar 

  • Emerson CW, Lam NSN, Quattrochi DA (1999) Multiscale fractal analysis of image texture and pattern. Photogramm. Eng. Remote Sens. 65(1):51–61

    Google Scholar 

  • Emerson CW, Lam NSN, Quattrochi DA (2005) A comparison of local variance, fractal dimension, and Moran’s I as aids to multispectral image classification. Int. J. Remote Sens. 26(8):1575–1588

    Article  Google Scholar 

  • Estreguil C, Lambin E (1996) Mapping forest disturbances in Papua New Guinea with AVHRR data. J. Biogeogr. 23:757–773

    Article  Google Scholar 

  • Falconer K (1988) Fractal geometry: mathematical foundations and applications. Wiley, New York

    Google Scholar 

  • Frank TD (1984) The effect of change in vegetation cover and erosion patterns on albedo and texture of Landsat images in a semiarid environment. Ann. Assoc. Am. Geogr. 74:393–407

    Article  Google Scholar 

  • Franklin SE, Hall RJ, Moskal LM, Maudie AJ, Lavigne MB (2000) Incorporating texture into classification of forest species composition form airborne multispectral images. Int. J. Remote Sens. 21(1):61–79

    Article  Google Scholar 

  • Gong P (2006) Information extraction. In: M Ridd, JD Hipple (eds), Remote sensing of human settlements. ASPRS, Bethesda, MD, pp 275–334

    Google Scholar 

  • Gong P, Marceau DJ, Howarth PJ (1992) A comparison of spatial feature extraction algorithms for land use classification with SPOT HRV data. Remote Sens. Environ. 40:137–151

    Article  Google Scholar 

  • Goodchild MF (1980) Fractals and the accuracy of geographical measures. Mathematical Geology 12:85–98

    Article  Google Scholar 

  • Goodchild MF (1986) Spatial Autocorrelation. CATMOG (Concepts and Techniques in Modern Geography) No. 47. Geo Books, Norwich, England

    Google Scholar 

  • Gopal S, Woodcock C (1996) Remote sensing of forest change using artificial neural networks. IEEE Trans. Geosci. Remote Sens. 34(2):398–404

    Article  Google Scholar 

  • Haralick RM (1979) Statistical and structural approaches to texture. Proc. IEEE 67(5):786–804

    Article  Google Scholar 

  • Haralick RM, Shanmugan K, Dinstein J (1973) Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6):610–621

    Article  Google Scholar 

  • Jaggi S, Quattrochi D, Lam NSN (1993) Implementation and operation of three fractal measurement algorithms for analysis of remote sensing data. Comput. Geosci. 19(6):745–767

    Article  Google Scholar 

  • Jensen J, Cowen D, Althausen J, Narumalani S, Weatherbee O (1993) An evaluation of the Coast-Watch change detection protocol in South Carolina. Photogrammetric Engineering and Remote Sensing 59(6):1039–1046

    Google Scholar 

  • Jensen J, Cowen D, Narumalani S, Halls J (1997) Principles of change detection using digital remote sensor data. In: JL Star, JE Estes, KC McGwire (eds), Integration of geographic information systems and remote sensing. Cambridge University Press, Cambridge, pp 37–54

    Google Scholar 

  • Jensen J (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice-Hall, New Jersey

    Google Scholar 

  • Jupp DLB, Walker J, Pendridge LK (1986) Interpretation of vegetation structure in Landsat MSS imagery: a case study in disturbed semi-arid eucalypt woodland. Part 2. model-based analysis. J. Environ. Manag. 23:35–57

    Google Scholar 

  • Kulkarni A (2004) Evaluation of the Impacts of Hurricane Hugo on the Land Cover of Francis Marion National Forest, South Carolina Using Remote Sensing. M.S. thesis, Louisiana State University, Baton Rouge, Louisiana

    Google Scholar 

  • Lam NSN (1990) Description and measurement of Landsat TM images using fractals. Photogramm. Eng. Remote Sens. 56(2):187–195

    Google Scholar 

  • Lam NSN (2004) Fractals and scale in environmental assessment and monitoring. In: E Sheppard, R McMaster R (eds), Scale and Geographic Inquiry: Nature, Society, and Method. Blackwell, Oxford, pp 23–40

    Chapter  Google Scholar 

  • Lam NSN, Quattrochi DA (1992) On the issues of scale, resolution, and fractal analysis in the mapping sciences. Prof. Geogr. 44(1):89–99

    Article  Google Scholar 

  • Lam NSN, De Cola L (eds) (1993) Fractals in geography. Prentice-Hall, Englewood Cliffs, NJ, 308p

    Google Scholar 

  • Lam NSN, Quattrochi DA, Qiu HL, Zhao W (1998) Environmental assessment and monitoring with image characterization and modeling system using multiscale remote sensing data. Appl. Geogr. Stud. 2(2):77–93

    Article  Google Scholar 

  • Lam NSN, Qiu HL, Quattrochi DA, Emerson CW (2002) An evaluation of fractal methods for measuring image complexity. Cartogr. Geogr. Inform. Sci. 29:25–35

    Article  Google Scholar 

  • Lam NSN, Catts C, Quattrochi DA, Brown D, McMaster R (2004) Scale. In: R McMaster, L Usery (eds), A Research Agenda for Geographic Information Science. CRC Press, Bacon Raton, FL, Chapter 4, pp 93–128

    Google Scholar 

  • Lambin EF (1996) Change detection at multiple temporal scales: seasonal and annual variations in landscape variables. Photogramm. Eng. Remote Sens. 62:931–938

    Google Scholar 

  • Lambin EF, Strahler AH (1994) Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales. Int. J. Remote Sens. 15:2099–2119

    Article  Google Scholar 

  • Lo CP, Quattrochi DA, Luvall JC (1997) Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing 18 (2):287–304

    Article  Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2005) Land-cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study. Int. J. Remote Sens. 26 (1):101–114

    Article  Google Scholar 

  • Lunetta R, Elvidge C (1998) Remote sensing change detection: environmental monitoring methods and applications. Sleeping Bear Press, Ann Arbor, MI

    Google Scholar 

  • Mallat SG (1989) A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11:674–693

    Article  Google Scholar 

  • Mandelbrot B (1982) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Machine Intell. 18(8):837–842

    Article  Google Scholar 

  • Mark DM, Aronson PB (1984) Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. Math. Geol. 11:671–684

    Google Scholar 

  • Mas JF (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int. J. Remote Sens. 20:139–152

    Article  Google Scholar 

  • McGarigal K (2002) Landscape pattern metrics. In AH El-Shaarawi, WW Piegorsch (eds), Encyclopedia of environmentrics, vol 2. Wiley, Sussex, England, pp 1135–1142

    Google Scholar 

  • McGarigal K, Mark BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying land-scape structure. USDA Forest Service General Technical Report PNW-351, Portland, Oregon

    Google Scholar 

  • Mallat S (1989) A theory of multi-resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intel. 11:674–693

    Article  Google Scholar 

  • Moller-Jensen L (1990) Knowledge-based classification of an urban area using texture and context information in Landsat-TM imagery. Photogramm. Eng. Remote Sens. 56(6):899–904

    Google Scholar 

  • Muneeswaran K, Ganesan L, Arumugam S, Sounda KR (2005) Texture classification with combined rotation and scale invariant wavelet features. Pattern Recogn. 38(10):1495–1506

    Article  Google Scholar 

  • Myint S, Lam NSN (2005a) A study of lacunarity based texture analysis approaches to improve urban image classification. Comput. Environ. Urban Syst. 29:501–523

    Article  Google Scholar 

  • Myint S, Lam NSN (2005b) Examining lacunarity approaches in comparison with fractal and spatial autocorrelation techniques for urban mapping. Photogramm. Eng. Remote Sens. 71(8):927-937

    Google Scholar 

  • Myint S, Lam NSN, Tyler J (2002) An evaluation of four different wavelet decomposition procedures for spatial feature discrimination in urban areas. Trans. GIS 6(4):403–429

    Article  Google Scholar 

  • Myint S, Lam NSN, Tyler J (2004) Wavelets for urban spatial feature discrimination: Comparisons with fractals, spatial autocorrelation, and spatial co-occurrence approaches. Photogramm. Eng. Remote Sens. 70(8):803–812

    Google Scholar 

  • Nackaerts K, Vaesen K, Muys B, Coppin P (2005) Comparative performance of a modified change vector analysis in forest change detection. Int. J. Remote Sens. 26(5):839–852

    Article  Google Scholar 

  • O’Neill RV, Johnson AR, King AW (1989) A hierarchical framework for the analysis of scale. Landscape Ecol. 7(1):55–61

    Article  Google Scholar 

  • O’Neill RV, Krummel JR, Gardner RH, Sugihara G, Jackson B, DeAngelis DL, Milne BT, Turner MG, et al. (1998) Indices of landscape pattern. Landscape Ecol. 1:153–162

    Article  Google Scholar 

  • Openshaw S (1989) Automating the search for cancer clusters. Prof. Statistician 8:7–8

    Google Scholar 

  • Pickup G, Foran BD (1987) The use of spectral and spatial variability to monitor cover change on inert landscapes. Remote Sens. Environ. 23:351–363

    Article  Google Scholar 

  • Plotnick RE, Gardner RH, O’Neill RV (1993) Lacunarity indices as measures of landscape texture. Landscape Ecol. 8:201–211

    Article  Google Scholar 

  • Quattrochi DA, Goodchild MF (1997) Scale in remote sensing and GIS. CRC/Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Quattrochi DA, Lam NSN, Qiu HL, Zhao W (1997) Image characterization and modeling system (ICAMS): a geographic information system for the characterization and modeling of multiscale remote sensing data. In: D Quattrochi, M Goodchild (eds), Scaling in remote sensing and GIS. CRC/Lewis Publishers, Boca Raton, FL, pp 295–307

    Google Scholar 

  • Read JM, Lam NSN (2002) Spatial methods for characterizing land-cover changes for the tropics. Int. J. Remote Sens. 23(12):2457–2474

    Article  Google Scholar 

  • Smits PC, Annoni A (2000) Towards specification-driven change detection. IEEE Trans. Geosci. Remote Sens. 38:1484–1488

    Article  Google Scholar 

  • Tate N, Atkinsons P (eds) (2001) Modelling scale in geographical information science. Wiley, New York

    Google Scholar 

  • Turner MG, Dale VH, Gardner RH (1989) Predicting across scales: theory development and testing. Landscape Ecol. 3(3/4):245–252

    Article  Google Scholar 

  • Voss R (1986) Random fractals: characterization and measurement. In: R Pynn, A Skjeltorp (eds), Scaling phenomena in disordered systems. Plenum, New York

    Google Scholar 

  • Woodcock CE, Strahler (1987) The factor of scale in remote sensing. Remote Sens. Environ. 21:311–332

    Article  Google Scholar 

  • Yuan D, Elvidge C, Lunetta R (1998) Survey of multispectral methods for land cover change analysis. In: R Lunetta, D Elvidge (eds), Remote sensing change detection. Sleeping Bear Press, Ann Arbor, MI

    Google Scholar 

  • Zhu C, Yang X (1998) Study of remote sensing image texture analysis and classification using wavelet. Int. J. Remote Sens. 19(16):3197–3203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Lam, N.SN. (2008). Methodologies for Mapping Land Cover/Land Use and its Change. In: Liang, S. (eds) Advances in Land Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6450-0_13

Download citation

Publish with us

Policies and ethics