Skip to main content

Identification of Inhomogeneities in Precipitation Time Series Using Stochastic Simulation

  • Chapter
Book cover geoENV VI – Geostatistics for Environmental Applications

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 15))

Abstract

Accurate quantification of observed precipitation variability is required for a number of purposes. However, high quality data seldom exist because in reality many types of non-climatic factors can cause time series discontinuities which may hide the true climatic signal and patterns, and thus potentially bias the conclusions of climate and hydrological studies. We propose the direct sequential simulation (DSS) approach for inhomogeneities detection in precipitation time series. Local probability density functions, calculated at known monitoring stations locations, by using spatial and temporal neighbourhood observations, are used for detection and classification of inhomogeneities. This stochastic approach was applied to four precipitation series using data from 62 surrounding stations located in the southern region of Portugal (1980–2001). Among other tests, three well established statistical tests were also applied: the Standard normal homogeneity test (SNHT) for a single break, the Buishand range test and the Pettit test. The inhomogeneities detection methodology is detailed, and the results from the testing procedures are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. WMO-TD No 1186, WCDMP No 53, World Meteorological Organization, Geneva

    Google Scholar 

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675

    Article  Google Scholar 

  • Alexandersson H, Moberg A (1997) Homogenization of Swedish temperature data, Part I: Homogeneity test for linear trends. Int J Climatol 17:25–34

    Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Orlik A, Potzmann R, Schöner W, Ungersböck M, Brunetti M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin J-M, Begert M, Brazdil R, Bochnicek O, Cegnar T, Gajic-Capka M, Zaninovic K, Majstorovic Z, Szalai S, Szentimrey T, Mercalli L (2005) A new instrumental precipitation dataset for the greater alpine region for the period 1800–2002. Int J Climatol 25:139–166

    Article  Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27

    Article  Google Scholar 

  • Costa AC, Soares A (2006) Identification of inhomogeneities in precipitation time series using SUR models and the Ellipse test. In: Caetano M, Painho M (eds.) Proceedings of Accuracy 2006 - 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Instituto Geográfico Português, pp 419–428

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  • Mann HB (1945) Mann HB (1945) Non-parametric test against trend. Econometrika 13:245–259

    Article  Google Scholar 

  • Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Forland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: A review. Int J Climatol 18:1493–1517

    Article  Google Scholar 

  • Pettit AN (1979) A non-parametric approach to the change-point detection. Appl Stat 28:126–135

    Article  Google Scholar 

  • Soares A (2001) Direct Sequential Simulation and Cosimulation. Math Geol 33:911–926

    Article  Google Scholar 

  • Von Neumann J (1941) Distribution of the ratio of the mean square successive difference to the variance. Ann Math Stat 13:367–395

    Article  Google Scholar 

  • Wald A, Wolfowitz J (1943) An exact test for randomness in the non-parametric case based on serial correlation. Ann Math Stat 14:378–388

    Article  Google Scholar 

  • Wijngaard JB (2003) Homogeneity of daily ‘European Climate Assessment and Dataset’ series. In: World Meteorological Organization (ed) Proceedings of the Second Seminar for Homogenization of Surface Climatological Data. WMO-TD No 962, WCDMP No 41, WMO, Geneva, pp 143–149

    Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Costa, A.C.M., Negreiros, J., Soares, A. (2008). Identification of Inhomogeneities in Precipitation Time Series Using Stochastic Simulation. In: Soares, A., Pereira, M.J., Dimitrakopoulos, R. (eds) geoENV VI – Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6448-7_23

Download citation

Publish with us

Policies and ethics