Skip to main content

The Effects of Mechanical Stimulation on Vertebrate Hearts

A Question of Class

  • Chapter
Mechanosensitive Ion Channels

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 1))

Abstract

All vertebrate cardiac muscle responds intrinsically to mechanical stimulation which can lead to changes in both the inotropic and chronotropic state of the heart. However the magnitude and physiological relevance of these mechanically-induced responses differ between vertebrate classes. This review will discuss the differences and similarities in the response of vertebrate hearts to stretch. It will focus on responses to mechanical stimulation that have been well characterised in mammals, and discuss what is known about them in non-mammalian vertebrates. Specifically we focus on the Frank- Starling response or length-tension relationship, stretch acceleration of heart rate (the Bainbridge effect) and mechanically-induced effects on cardiac rhythm. Although they have not been categorically studied, these three basic mechanical and electrical responses to stretch are likely present in all vertebrate classes. For example, in a manner similar to mammals, one of the earliest vertebrates, the hagfish (Myxine glutinosa), shows a remarkable increase (up to 150%) in heart rate in response to cardiac stretch and in amphibian hearts, modification of action potential profiles and mechanically triggered action potentials have been observed. These commonalities are interesting given the differences in whole heart, cellular and sub-cellular morphology and working environments between early and later vertebrates. These differences may have led to fundamental differences in cardiovascular design between classes. For instance, the exquisite sensitivity of the Starling response in the heart of the rainbow trout (Oncorhynchus mykiss) may explain why fish increase predominantly stroke volume rather than heart rate when modulating cardiac output. We speculate that despite the variety of vertebrate hearts, mechanosensitivity is fundamentally similar, if subtly different, across classes. Shared mechanisms, such as mechanosensitive channels (possibly TRP), make early vertebrate hearts useful models for the study of cardiac mechanosensitivity. Finally, given that early vertebrates are known to rely on intrinsic regulation to a greater extent than later vertebrates they may provide useful systems in which to study the role of mechanosensitivity in the evolution of cardiac function and cardiac regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen DG & Blinks JR (1978). Calcium transients in aequorin-injected frog cardiac muscle. Nature 273, 509–513.

    Article  PubMed  CAS  Google Scholar 

  • Allen DG & Kentish JC (1985). The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17, 821–840.

    Article  PubMed  CAS  Google Scholar 

  • Anderson RH, Ho SY, Redmann K, Sanchez-Quintana D, & Lunkenheimer PP (2005). The anatomical arrangement of the myocardial cells making up the ventricular mass. Eur J Cardiothorac Surg 28, 517–525.

    Article  PubMed  Google Scholar 

  • Asnes CF, Marquez JP, Elson EL, & Wakatsuki T (2006). Reconstitution of the Frank-Starling mechanism in engineered heart tissues. Biophys J 91, 1800–1810.

    Article  PubMed  CAS  Google Scholar 

  • Barritt G & Rychkov G (2005). TRPs as mechanosensitive channels. Nat Cell Biol 7, 105–107.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten CM & Clemo HF (2003). Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 82, 25–42.

    Article  PubMed  CAS  Google Scholar 

  • Bean BP, Nowycky MC, & Tsien RW (1984). [beta]-Adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307, 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Betanzos M, Chiang CS, Guy HR, & Sukharev S (2002). A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension 145. Nat Struct Biol 9, 704–710.

    Article  PubMed  CAS  Google Scholar 

  • Bett GC & Sachs F (2000). Activation and inactivation of mechanosensitive currents in the chick heart. J Membr Biol 173, 237–254.

    Article  PubMed  CAS  Google Scholar 

  • Brette F & Orchard C (2003). T-Tubule Function in Mammalian Cardiac Myocytes. Circ Res 92, 1182–1192.

    Article  PubMed  CAS  Google Scholar 

  • Burggren W, Farrell A, & Lillywhite H (1997). Vertebrate cardiovascular systems. In The Handbook of Physiology, ed. W.H. Dantzler, pp. 215–308. Oxford University Press, New York, Oxford.

    Google Scholar 

  • Burggren W & Doyle M (1986). Ontogeny of heart rate regulation in the bullfrog, Rana catesbeiana. AJP - Regulatory, Integrative and Comparative Physiology 251, R231–R239.

    CAS  Google Scholar 

  • Bustamante JO, Ruknudin A, & Sachs F (1991). Stretch-activated channels in heart cells: relevance to cardiac hypertrophy. J Cardiovasc Pharmacol 17 Suppl 2, S110–S113.

    Article  PubMed  Google Scholar 

  • Butler PJ, Frappell PB, Wang T, & Wikelski M (2002). The relationship between heart rate and rate of oxygen consumption in Galapagos marine iguanas (Amblyrhynchus cristatus) at two different temperatures. J Exp Biol 205, 1917–1924.

    PubMed  Google Scholar 

  • Calaghan S & White E (2004). Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart. J Physiol 559, 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Calaghan SC, Le Guennec JY, & White E (2004). Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog Biophys Mol Biol 84, 29–59.

    Article  PubMed  CAS  Google Scholar 

  • Calaghan SC & White E (2005). Mechanical modulation of intracellular ion concentrations: mechanisms and electrical consequences. In Mechanosensitivity in cells and tissues, eds. Kamkin A & Kiseleva I, pp. 230–254. Academia Publishing House Ltd., Moscow.

    Google Scholar 

  • Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitas K, Labeit S, & Granzier H (2000a). Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86, 59–67.

    CAS  Google Scholar 

  • Cazorla O, Le Guennec JY, & White E (2000b). Length-tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts. Journal of Molecular and Cellular Cardiology 32, 735–744.

    Article  CAS  Google Scholar 

  • Cerra MC, Imbrogno S, Amelio D, Garofalo F, Colvee E, Tota B, & Icardo JM (2004). Cardiac morphodynamic remodelling in the growing eel (Anguilla anguilla L.). J Exp Biol 207, 2867–2875.

    Article  PubMed  CAS  Google Scholar 

  • Cooper PJ, Lei M, Cheng LX, & Kohl P (2000). Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol 89, 2099–2104.

    PubMed  CAS  Google Scholar 

  • Czarnecki CM (1984). Animal models of drug-induced cardiomyopathy. Comp Biochem Physiol C 79, 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Faber JJ (1968). Mechanical function of the septating embryonic heart. Am J Physiol 214, 475–481.

    PubMed  CAS  Google Scholar 

  • Fabiato A & Fabiato F (1978). Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J Gen Physiol 72, 667–699.

    Article  PubMed  CAS  Google Scholar 

  • Farrell A, Franklin C, Arthur P, Thorarensen H, & Cousins K (1994). Mechanical performance of an in situ perfused heart from the turtle chrysemys scripta during normoxia and anoxia at 5 C and 15 C. J Exp Biol 191, 207–229.

    PubMed  Google Scholar 

  • Farrell AP (1991). From hagfish to tuna: a perspective on cardiac-function in fish. Physiological Zoology ; 64, 1137–1164.

    Google Scholar 

  • Farrell AP, Johansen JA, & Graham MS (1988). The role of the pericardium in cardiac-performance of the trout (Salmo Gairdneri). Physiological Zoology; 61, 213–221.

    Google Scholar 

  • Farrell AP & Jones DR (1992). The Heart. In The Cardiovascular System, eds. Hoar WS, Randall DJ, & Farrell AP, pp. 1–88. Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Farrell AP, MacLeod K, & Chancey B (1986). Intrinsic mechanical properties of the perfused rainbow trout heart and the effects of catecholamines and extracellular calcium under control and acidotic conditions. J Exp Biol 125, 319–345.

    PubMed  CAS  Google Scholar 

  • Farrell AP & Olson KR (2000). Cardiac natriuretic peptides: a physiological lineage of cardioprotective hormones? Physiol Biochem Zool 73, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Farrell AP, Small S, & Graham MS (1989). Effect of Heart-Rate and Hypoxia On the Performance of a Perfused Trout Heart. Canadian Journal of Zoology; 67, 274–280.

    Article  Google Scholar 

  • Fasciano RW & Tung L (1999). Factors governing mechanical stimulation in frog hearts. Am J Physiol 277, H2311–H2320.

    PubMed  CAS  Google Scholar 

  • Forster EM. Performance of the heart of the hagfish, Eptatretus cirrhatus. Fish Physiology and Biochemistry 6, 327–331. 1989.

    Article  Google Scholar 

  • Franklin C & Axelsson M (1994). The intrinsic properties of an in situ perfused crocodile heart. J Exp Biol 186, 269–288.

    PubMed  Google Scholar 

  • Franklin CE. Intrinsic properties of an in situ turtle heart (Emydura signata) preparation perfused via both atria. Comp Biochem Physiol 107, 501–507. 1994.

    Article  Google Scholar 

  • Franklin CE & Davie PS (1992). Dimensional analysis of the ventricle of an in situ perfused trout heart using echocardiography. J Exp Biol 166, 47–60.

    PubMed  CAS  Google Scholar 

  • Fukuda N, Wu Y, Farman G, Irving TC, & Granzier H (2003). Titin isoform variance and length dependence of activation in skinned bovine cardiac muscle. J Physiol (Lond) 553, 147–154.

    Article  CAS  Google Scholar 

  • Fukuda, N.; Wu, Y.; Nair, P.; Granzier, H.L. (2005). Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. J Gen Physiol 125; 257–271.

    Article  PubMed  CAS  Google Scholar 

  • Galli GLJ, Gesser H, Taylor EW, Shiels HA, & Wang T (2006). The role of the sarcoplasmic reticulum in the generation of high heart rates and blood pressures in reptiles. J Exp Biol 209, 1956–1963.

    Article  PubMed  Google Scholar 

  • Goaillard JM, Vincent PV, & Fischmeister R (2001). Simultaneous measurements of intracellular cAMP and L-type Ca2+ current in single frog ventricular myocytes. J Physiol 530, 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, & Julian FJ (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184, 170–192.

    PubMed  CAS  Google Scholar 

  • Graham MS & Farrell AP (1989). The effect of temperature-acclimation and adrenaline on the performance of a perfused trout heart. Physiol Zool 62, 38–61.

    Google Scholar 

  • Granzier HL & Irving TC (1995). Passive tension in cardiac muscle - contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68, 1027–1044.

    Article  PubMed  CAS  Google Scholar 

  • Grubb BR (1982). Cardiac output and stroke volume in exercising ducks and pigeons. J Appl Physiol 53, 207–211.

    PubMed  CAS  Google Scholar 

  • Hamill OP & Martinac B (2001). Molecular basis of mechanotransduction in living cells. Physiol Rev 81, 685–740.

    PubMed  CAS  Google Scholar 

  • Hanley PJ, Young AA, LeGrice IJ, Edgar SG, & Loiselle DS (2006). 3-Dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J Physiol 517, 831–837.

    Article  Google Scholar 

  • Hu H & Sachs F (1996). Mechanically activated currents in chick heart cells. J Membr Biol 154, 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Icardo J, Imbrogno S, Gattuso A, Colvee, & Tota B (2005). The heart of Sparus auratus: a reappraisal of cardiac functional morphology in teleosts. Journal of Experimental Zoology 303A, 665–675.

    Article  Google Scholar 

  • Imbrogno S, De IL, Mazza R, & Tota B (2001). Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla. J Exp Biol 204, 1719–1727.

    PubMed  CAS  Google Scholar 

  • Jensen D (1961). Cardioregulation in an aneural heart. Comp Biochem Physiol 2, 181–201.

    Article  PubMed  CAS  Google Scholar 

  • Ju YK & Allen DG (2000). The mechanisms of sarcoplasmic reticulum Ca2+ release in toad pacemaker cells. J Physiol 525 Pt 3, 695–705.

    Google Scholar 

  • Kamkin A & Kiseleva I (2005). Mechanosensitivity in cells and tissues, first ed., pp. 1–465. Academia Publishing House Ltd, Moscow.

    Google Scholar 

  • Kamkin A, Kiseleva I, Lozinsky I, Wagner KD, Isenberg G, & Scholz H (2005). The role of mechanosensitive fibroblasts in the heart. In Mechanosensitivity in cells and tissues, eds. Kamkin A & Kiseleva I, pp. 203–229. Academia Publishing House Ltd, Moscow.

    Google Scholar 

  • Keatinge WR (1959). The effect of increased filling pressure on rhythmicity and atrioventricular conduction in isolated hearts. J Physiol 149, 193–208.

    PubMed  CAS  Google Scholar 

  • Kentish JC, ter Keurs HE, Ricciardi L, Bucx JJ, & Noble MI (1986). Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58, 755–768.

    PubMed  CAS  Google Scholar 

  • Kim CS, Davidoff AJ, Maki TM, Doye AA, & Gwathmey JK (2000). Intracellular calcium and the relationship to contractility in an avian model of heart failure. J Comp Physiol [B] 170, 295–306.

    CAS  Google Scholar 

  • Klitzner T & Morad M (1983). Excitation-contraction coupling in frog ventricle. Possible Ca2+ transport mechanisms. Pflugers Arch 398, 274–283.

    Article  PubMed  CAS  Google Scholar 

  • Kohl P, Kamkin AG, Kiseleva IS, & Streubel T (1992). Mechanosensitive cells in the atrium of frog heart. Exp Physiol 77, 213–216.

    PubMed  CAS  Google Scholar 

  • Kohl P, Sachs F, & Franz MR (2005). Cardiac mechano-electric feedback & arrhythmias, from patient to pipette, pp. 1–423. Saunders Elsevier, Philadelphia.

    Google Scholar 

  • Lab MJ (1978). Mechanically dependent changes in action potentials recorded from the intact frog ventricle. Circ Res 42, 519–528.

    PubMed  CAS  Google Scholar 

  • Lab MJ (1980). Transient depolarisation and action potential alterations following mechanical changes in isolated myocardium. Cardiovasc Res 14, 624–637.

    Article  PubMed  CAS  Google Scholar 

  • Lab MJ, Allen DG, & Orchard CH (1984). The effects of shortening on myoplasmic calcium concentration and on the action potential in mammalian ventricular muscle. Circ Res 55, 825–829.

    PubMed  CAS  Google Scholar 

  • Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H (2003). Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci U.S.A 100;13716–13721.

    Article  PubMed  CAS  Google Scholar 

  • Larsen TH, Dalen H, Boyle R, Souza MM, & Lieberman M (2000). Cytoskeletal involvement during hypo-osmotic swelling and volume regulation in cultured chick cardiac myocytes Histochem Cell Biol 113, 479–488.

    PubMed  CAS  Google Scholar 

  • Li F, McNelis MR, Lustig K, & Gerdes AM (1997). Hyperplasia and hypertrophy of chicken cardiac myocytes during posthatching development. Am J Physiol 273, R518–R526.

    PubMed  CAS  Google Scholar 

  • Lillywhite HB, Zippel KC, & Farrell AP (1999). Resting and maximal heart rates in ectothermic vertebrates. Comp Biochem Physiol A Mol Integr Physiol 124, 369–82.

    Article  PubMed  CAS  Google Scholar 

  • Lustig KH, Gerdes AM, & Capasso JM (1996). Characterization of enzymically isolated myocytes from the turtle, Chrysemys picta. Comp Biochem Physiol B Biochem Mol Biol 115B, 457–464.

    Article  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, & Hamill OP (2005). TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Martinac B & Kloda A (2003). Evolutionary origins of mechanosensitive ion channels 110. Prog Biophys Mol Biol 82, 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Nassar R, Manring A, & Johnson EA (1974). Light diffraction of cardiac muscle:sarcomere motion during contraction. In The Physiological Basis of Starling’s Law of the Heart, eds. Porter R & Fitzsimons DW, pp. 57–91. Elsevier, Amsterdam.

    Google Scholar 

  • Page SG (1974). Measurement of structural parameters in cardiac muscle. In The Physiological basis of Starling’s law of the heart, eds. Porter R & Fitzsimons DW, pp. 13–30. Elsevier, Amsterdam.

    Google Scholar 

  • Pathak CL (1958). Effect of stretch on formation and conduction of electrical impulses in the isolated sinoauricular chamber of frog’s heart. Am J Physiol 192, 111–113.

    PubMed  CAS  Google Scholar 

  • Pathak CL (1966). The fallacy of the Bainbridge reflex. Am Heart J 72, 577–581.

    Article  PubMed  CAS  Google Scholar 

  • Pathak CL (1973). Autoregulation of chronotropic response of the heart through pacemaker stretch. Cardiology 58, 45–64.

    Article  PubMed  CAS  Google Scholar 

  • Pathak CL (1976). Transmural pressure as a determinant of basic intrinsic heart rate. Experientia 32, 1295–1297.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen SF, Owsianik G, & Nilius B (2005). TRP channels: an overview. Cell Calcium 38, 233–252.

    Article  PubMed  CAS  Google Scholar 

  • Perozo E, Cortes DM, Sompornpisut P, Kloda A, & Martinac B (2002). Open channel structure of MscL and the gating mechanism of mechanosensitive channels 143. Nature 418, 942–948.

    Article  PubMed  CAS  Google Scholar 

  • Peters GW, Steiner DA, Rigoni JA, Mascilli AD, Schnepp RW, & Thomas SP (2005). Cardiorespiratory adjustments of homing pigeons to steady wind tunnel flight. J Exp Biol 208, 3109–3120.

    Article  PubMed  Google Scholar 

  • Rasmusson RL, Clark JW, Giles WR, Robinson K, Clark RB, Shibata EF, & Campbell DL (1990). A mathematical model of electrophysiological activity in a bullfrog atrial cell. Am J Physiol 259, H370–H389.

    PubMed  CAS  Google Scholar 

  • Riemer TL, Sobie EA, & Tung L (1998). Stretch-induced changes in arrhythmogenesis and excitability in experimentally based heart cell models. Am J Physiol 275, H431–H442.

    PubMed  CAS  Google Scholar 

  • Riemer TL & Tung L (2003). Stretch-induced excitation and action potential changes of single cardiac cells. Prog Biophys Mol Biol 82, 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Ruknudin A, Sachs F, & Bustamante JO (1993). Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol 264, H960–H972.

    PubMed  CAS  Google Scholar 

  • Saito S & Shingai R (2006). Evolution of thermoTRP ion channel homologs in vertebrates. Physiol Genomics. 27, 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Quintana, D., García-Martínez, V., Climent, V., Hurlé, J.M. (1996). Myocardial fiber and connective tissue architecture in the fish heart ventricle. J Exp Zool 275; 112–224.

    Article  Google Scholar 

  • Santer RM & Greer Walker M. Morphological studies on the ventricle of teleost and elasmobranch hearts. J Zool 190, 259–272. 1980.

    Article  Google Scholar 

  • Satchell GH (1991). Physiology and form of fish circulation, pp. 235. Cambridge University Press, Cambridge.

    Google Scholar 

  • Satoh H, Delbridge LM, Blatter LA, & Bers DM (1996). Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys J 70, 1494–1504.

    Article  PubMed  CAS  Google Scholar 

  • Seeley M, Huang W, Chen Z, Wolff WO, Lin X & Xu X (2007). Depletion of Zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands. Circ Res 100, 238–45.

    Article  PubMed  CAS  Google Scholar 

  • Shiels HA, Calaghan SC, & White E (2006). The cellular basis for enhanced volume-modulated cardiac output in fish hearts. J Gen Physiol 128, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Shiels HA & White E (2005). Temporal and spatial properties of cellular Ca2+ flux in trout ventricular myocytes. Am J Physiol 288, R1756–R1766.

    CAS  Google Scholar 

  • Sigurdson W, Ruknudin A, & Sachs F (1992). Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262, H1110–H1115.

    PubMed  CAS  Google Scholar 

  • Singh J (1982). Stretch stimulates cyclic nucleotide metabolism in the isolated frog ventricle. Pflugers Arch 395, 162–164.

    Article  PubMed  CAS  Google Scholar 

  • Sokabe M, Hasegawa N, & Yamamori K (1993). Blockers and activators for stretch-activated ion channels of chick skeletal muscle 824. Ann N Y Acad Sci 707, 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Sommer JR, Bossen E, Dalen H, Dolber P, High T, Jewett P, Johnson EA, Junker J, Leonard S, Nassar R, & . (1991). To excite a heart: a bird’s view. Acta Physiol Scand Suppl 599, 5–21.

    PubMed  CAS  Google Scholar 

  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM, & Sachs F (2000). Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115, 583–598.

    Article  PubMed  CAS  Google Scholar 

  • Taggart, P.; Sutton, P.M. (1999) Cardiac mechano-electric feedback in man: clinical relevance. Prog Biophys Mol Biol 139–154

    Google Scholar 

  • Tarr M, Trank JW, Goertz KK, & Leiffer P (1981). Effect of initial sarcomere length on sarcomere kinetics and force development in single frog atrial cardiac cells. Circ Res 49, 767–774.

    PubMed  CAS  Google Scholar 

  • Tarr M, Trank JW, Leiffer P, & Shepherd N (1979). Sarcomere length-resting tension relation in single frog atrial cardiac cells. Circ Res 45, 554–559.

    PubMed  CAS  Google Scholar 

  • Tung L & Morad M (1988). Contractile force of single heart cells compared with muscle strips of frog ventricle. Am J Physiol 255, H111–H120.

    PubMed  CAS  Google Scholar 

  • Tung L & Zou S (1995). Influence of stretch on excitation threshold of single frog ventricular cells. Exp Physiol 80, 221–235.

    PubMed  CAS  Google Scholar 

  • Volgis G & Tavernarakis N (2005). Mechanotransduction in the nematode Caenorhabditis elegans. In Mechanosensitivity in cells and tissues, eds. Kamkin A & Kiseleva I, pp. 22–56. Academia Publishing House Ltd, Moscow.

    Google Scholar 

  • Vornanen M (1997). Sarcolemmal Ca influx through L-type Ca channels in ventricular myocytes of a teleost fish. Am J Physiol 41, R1432–R1440.

    Google Scholar 

  • Vornanen M (1998). L-type Ca2+ current in fish cardiac myocytes: Effects of thermal acclimation and beta-adrenergic stimulation. J Exp Biol 201, 533–547.

    PubMed  CAS  Google Scholar 

  • Wang T, Altimiras J, & Axelsson M (2002). Intracardiac flow separation in an in situ perfused heart from Burmese python Python molurus. J Exp Biol 205, 2715–2723.

    PubMed  Google Scholar 

  • Watson PA (1991). Function follows form: generation of intracellular signals by cell deformation. FASEB J 5, 2013–2019.

    PubMed  CAS  Google Scholar 

  • White E (2006). Mechanosensitive channels:Therapeutic targets in the Myocardium? Curr Pharm Des 12, 3645–3663.

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Cazorla O, Labeit D, & Granzier H (2000). Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 32, 2151–2162.

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Tobias AH, Bell K, Barry W, Helmes M, Trombitas K, Tucker R, Campbell KB, & Granzier HL (2004). Cellular and molecular mechanisms of systolic and diastolic dysfunction in an avian model of dilated cardiomyopathy. J Mol Cell Cardiol 37, 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Larsen TH, & Lieberman M (1997). F-actin modulates swelling-activated chloride current in cultured chick cardiac myocytes. Am J Physiol 273, C1215–C1224.

    PubMed  CAS  Google Scholar 

  • Zhang J & Lieberman M (1996). Chloride conductance is activated by membrane distension of cultured chick heart cells. Cardiovasc Res 32, 168–179.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Shiels, H.A., White, E. (2008). The Effects of Mechanical Stimulation on Vertebrate Hearts. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitive Ion Channels. Mechanosensitivity in Cells and Tissues, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6426-5_15

Download citation

Publish with us

Policies and ethics