Skip to main content

Multimodal Activation and Regulation of Neuronal Mechanosensitive Cation Channels

  • Chapter
  • 1006 Accesses

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 1))

Abstract

Recent findings show that mechanosensitive cation channels are expressed in the central nervous system. These molecules can be found not only, as expected, in mechanosensory cells but also in neurons not involved in sensory mechanotransduction. The expression of these channels in nonspecialized neurons is related to the need for cells to deal with general functions such as volume and electrolyte homeostasis as well as cell movement regulation. Since adhesion and advance of nerve growth cones are associated with changes in membrane tension and with oscillations of intracellular calcium concentration, mechanosensitive cation channels may play critical roles in neurite growth. In keeping with this, elementary mechanosensitive cation currents can be recorded from membranes of neuronal growth cones.

Large conductance mechanosensitive cation channels have been investigated in central neurons of the leech. A multimodal activation, by membrane potential, intracellular calcium and pH, as well as a powerful modulation by adenosine nucleotides have been recently established. These features are discussed as possible mechanisms enabling these channels to contribute to neurite remodeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambudkar IS (2006) Ca2+ signaling microdomains: platforms for the assembly and regulation of TRPC channels. TrendsPharmacol Sci 27:25–32

    CAS  Google Scholar 

  • Auerbach A (1991) Single channel dose-response studies in single cell-attached patches. BiophysJ 60:660–670

    Article  CAS  Google Scholar 

  • Barsanti C, Pellegrini M, Pellegrino M (2006a) Regulation of the mechanosensitive cation channels by ATP and cAMP in leech neurons. BBA Biomembranes 1758:666–672

    Article  CAS  Google Scholar 

  • Barsanti C, Pellegrini M, Ricci D, Pellegrino M (2006b) Effects of intracellular pH and Ca2+ on the activity of stretch-sensitive cation channels in leech neurons. EurJ Physiol 452:435–443

    Article  CAS  Google Scholar 

  • Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720

    Article  PubMed  CAS  Google Scholar 

  • Calabrese B, Manzi S, Pellegrini M, Pellegrino M (1999) Stretch-activated cation channels of leech neurons: characterization and role in neurite outgrowth. EurJ Neurosci 11:2275–2284

    Article  CAS  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature432:723–730

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M, Cherian S, Silver IA (2004) Energy metabolism in mammalian brain during development. ProgNeurobiol 73:397–445

    CAS  Google Scholar 

  • Gomez TM, Snow DM, Letourneau PC (1995) Characterization of spontaneous calcium transients in nerve growth cones and their effect on growth cone migration. Neuron14:1233–1246

    Article  PubMed  CAS  Google Scholar 

  • Gomez TM, Spitzer NC (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397:350–355

    Article  PubMed  CAS  Google Scholar 

  • Gorbunova YV, Spitzer NC (2002) Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes. Nature418:93–96

    Article  PubMed  CAS  Google Scholar 

  • Grumbacher-Reinert S (1989) Local influence of substrate molecules in determining distinctive growth patterns of identified neurons in culture. ProcNatl Acad Sci USA 86:7270–7274

    Article  CAS  Google Scholar 

  • Hamill OP, McBride DW Jr (1996) The pharmacology of mechanogated membrane ion channels. PharmacolRev 48:231–252

    CAS  Google Scholar 

  • Henley J, Poo MM (2004) Guiding neuronal growth cones using Ca2+ signals. TrendsCell Biol 14:320–330

    Article  CAS  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. ProcNatl Acad Sci USA 99:7461–7466

    Article  CAS  Google Scholar 

  • Hurwitz CG, Segal AS (2001) Application of pressure steps to mechanosensitive channels in membrane patches: a simple, economical, and fast system. EurJ Physiol 442:150–156

    Article  CAS  Google Scholar 

  • Hurwitz CG, Hu VY, Segal AS (2002) A mechanogated nonselective cation channel in proximal tubule that is ATP sensitive. AmJ Physiol Renal Physiol 283:F93–F104

    CAS  Google Scholar 

  • Ishikawa T, Marunaka Y, Rotin D (1998) Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effectsof Na+ and Ca2+. J Gen Physiol 111:825–846

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Jiang C, Stutts MJ, Marunaka Y, Rotin D (2003) Regulation of the epithelial Na+ channel by cytosolic ATP. J Biol Chem 278:38276–38286

    Article  PubMed  CAS  Google Scholar 

  • Jacques-Fricke BT, Seow Y, Gottlieb PA, Sachs F, Gomez TM (2006) Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. JNeurosci 26:5656 –5664

    Article  CAS  Google Scholar 

  • Kawakubo T, Naruse K, Matsubara T, Hotta N, Sokabe M (1999) Characterization of a newly found stretch-activated K$Ca,ATP channel in cultured chick ventricular myocytes. AmJ Physiol 276: H1827–H1838

    CAS  Google Scholar 

  • Kiselyov K, Kim JY, Zeng W, Muallem S (2005) Protein-protein interaction and functionTRPC channels. EurJ Physiol 451:116–124

    Article  CAS  Google Scholar 

  • Ko KS, McCulloch CA (2000) Partners in protection: interdipendence of cytoskeleton and plasma membrane in adaptations to applied forces. JMembr Biol 174:85–95

    Article  CAS  Google Scholar 

  • Kwak J, Wang MH, Hwang SW, Kim T, Lee S, Oh U (2000) Intracellular ATP increases capsaicin-activated channel activity by interacting with nucleotide-binding domains. JNeurosci 20:8298–8304

    CAS  Google Scholar 

  • Lamoureux P, Buxbaum RE, Heidemann SR (1989) Direct evidence that growth cones pull. Nature340:159–162

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature400:382–386

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XR (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894–898

    Article  PubMed  CAS  Google Scholar 

  • Lin SY, Corey DP (2005) TRP channels in mechanosensation. Curr Opin Neurobiol 15:350–357

    Article  PubMed  CAS  Google Scholar 

  • Maingret F, Fosset M, Lesage F, Lazdunski M (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. JBiol Chem 274:1381–1387

    Article  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. NatCell Biol 7:179–185

    CAS  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. JCell Sci 117:2449–2460

    Article  CAS  Google Scholar 

  • Menconi MC, Pellegrini M, Pellegrino M (2001) Voltage-induced activation of mechanosensitive cation channels of leech neurons. J Membr Biol 180:65–72

    Article  PubMed  CAS  Google Scholar 

  • Morris CE, Horn R (1991) Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 251:1246–1249

    Article  PubMed  CAS  Google Scholar 

  • Mosbacher J, Langer M, Horber JK, Sachs F (1998) Voltage-dependent membrane displacements measured by atomic force microscopy. JGen Physiol 111:65–74

    Article  CAS  Google Scholar 

  • Nilius B, Prenen J, Voets T, Droogmans G (2004) Intracellular nucleotides and polyamines inhibit Ca2+-activated cation channel TRPM4b. EurJ Physiol 448:70–75

    Article  CAS  Google Scholar 

  • Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gating of TRP channels: a voltage connection? J Physiol 567:35–44.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, Tessier-Lavigne M, Poo MM, Hong K (2003) Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature423:990–995

    Article  PubMed  CAS  Google Scholar 

  • Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    Article  PubMed  CAS  Google Scholar 

  • O’Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. NatNeurosci 8:43–50

    CAS  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85: 757–810

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honoré E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBOJ 17:4283–4290

    Article  CAS  Google Scholar 

  • Patel A, Honoré E (2001) Properties and modulation of mammalian 2P domain K+ channels. TrendsNeurosci 24:339–346

    CAS  Google Scholar 

  • Pedersen SF, Owsianik KG, Nilius B (2005) TRP channels: an overview. CellCalcium 38:233–252

    Article  CAS  Google Scholar 

  • Pellegrini M, Menconi MC, Pellegrino M (2001) Stretch-activated cation channels of leech neurons exhibit two activity modes. EurJ Neurosci 13:503–511

    Article  CAS  Google Scholar 

  • Pellegrino M, Pellegrini M, Simoni A, Gargini C (1990) Stretch-activated cation channels with large unitary conductance in leech central neurons. BrainRes 525:322–326

    CAS  Google Scholar 

  • Petrov AG, Miller BA, Hristova K, Usherwood PN (1993) Flexoelectric effects in model and native membranes containing ion channels. EurBiophys J 22:289–300

    CAS  Google Scholar 

  • Robson L, Hunter M (2000) An intracellular ATP-activated, calcium-permeable conductance on the basolateral membrane of single renal proximal tubule cells isolated from Rana temporaria. J Physiol 523:301–311

    Article  PubMed  CAS  Google Scholar 

  • Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. RevPhysiol Biochem Pharmacol 132:1–77

    CAS  Google Scholar 

  • Sackin H (1995) Mechanosensitive channels. AnnuRev Physiol 57:333–353

    CAS  Google Scholar 

  • Schaefer M (2005) Homo- and heteromeric assembly of TRP channel subunits. EurJ Physiol 451:35–42

    Article  CAS  Google Scholar 

  • Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song H, Ming G (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. NatureNeurosci 8:730–735

    CAS  Google Scholar 

  • Sigurdson WJ, Morris CE (1989) Stretch-activated ion channels in growth cones of snail neurons. JNeurosci 9:2801–2808

    CAS  Google Scholar 

  • Silberberg SD, Magleby KL (1997) Voltage-induced slow activation and deactivation of mechano-sensitive channels in Xenopus oocytes. J Physiol (London) 505: 551–569

    Article  CAS  Google Scholar 

  • Strassmaier M, Gillespie PG (2002) The hair cell’s transduction channel. CurrOpin Neurobiol 12:380–386

    Article  CAS  Google Scholar 

  • Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. JBiol Chem 278:39014–39019

    Article  Google Scholar 

  • Tan JH, Liu W, Saint DA (2002) Trek-like potassium channels in rat cardiac ventricular myocytes are activated by intracellular ATP. J Membr Biol 185:201–207

    Article  PubMed  CAS  Google Scholar 

  • Tavernarakis N, Driscoll M (1997) Molecular modelling of mechanotransduction in the nematode Caenorhabditis elegans. Annu Rev Physiol 59:659–689

    Article  PubMed  CAS  Google Scholar 

  • Traut TW (1994) Physiological concentrations of purines and pyrimidines. MolCell Biochem 140: 1–22

    CAS  Google Scholar 

  • Wan X, Juranka P, Morris CE (1999) Activation of mechanosensitive currents in traumatized membrane. AmJ Physiol 276:C318–C327

    CAS  Google Scholar 

  • Wang XP, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434:898–904

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Enyeart JJ (2001) Properties of ATP-dependent K+ channels in adrenocortical cells. AmJ Physiol Cell Physiol 280:C199–C215

    CAS  Google Scholar 

  • Zaccolo M, Magalhaes P, Pozzan T (2002) Compartmentalisation of cAMP and Ca2+ signals. CurrOpin Cell Biol 14:160–166

    Article  CAS  Google Scholar 

  • Zhang PC, Keleshian AM, Sachs F (2001) Voltage-induced membrane movement. Nature413:428–432

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Gao F, Popov VL, Wen JW, Hamill OP (2000) Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vescicles from Xenopus oocytes. JPhysiol (London) 523: 117–130

    Article  CAS  Google Scholar 

  • Zhang Y, Hamill OP (2000a) Calcium-, voltage- and osmotic stress-sensitive currents in Xenopus oocytes and their relationship to single mechanically gated channels. JPhysiol (London) 523: 83–99

    Article  CAS  Google Scholar 

  • Zhang Y, Hamill OP (2000b) On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol (London) 523: 101–115.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Pellegrino, M., Barsanti, C., Pellegrini, M. (2008). Multimodal Activation and Regulation of Neuronal Mechanosensitive Cation Channels. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitive Ion Channels. Mechanosensitivity in Cells and Tissues, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6426-5_13

Download citation

Publish with us

Policies and ethics