Caveolae

Co-ordinating Centres for Mechanotransduction in the Heart?
  • Sarah Calaghan
Part of the Mechanosensitivity in Cells and Tissues book series (MECT, volume 1)

Abstract

The heart possesses the intrinsic ability to adjust to short- and long-term haemodynamic demands. These adaptive responses are dependent on the sensation of mechanical stimuli and transduction into cellular events. Recent evidence suggests that caveolae, flask-shaped invaginations of the cell membrane, may be an important part of the mechanotransductive pathway in the cardiac cell. Caveolae are ‘signalosomes’, microdomains enriched in components of signal transduction cascades, ion channels and exchangers, which are known to control some elements of cell signalling. The marker protein for caveolae, caveolin, acts as a scaffold for macromolecular signalling complexes, and can also regulate the activity of proteins with which it interacts. In this review, the morphological, biochemical and functional evidence to support a role for caveolae in mechanosensation and mechanotransduction will be presented. Although there is a paucity of direct evidence in the cardiac myocyte, the available data support the idea that caveolae are an integral part of downstream stretch-activated signalling, and that they are essential for the proper integration and co-ordination of mechanosensitive signalling pathways

Keywords

Lipid rafts Caveolae Cardiac Stretch Swelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen DG & Kurihara S (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327: 79–94.PubMedGoogle Scholar
  2. Alvarez BV, Perez NG, Ennis IL, Camilion de Hurtado MC, & Cingolani HE (1999). Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res 85, 716–722.PubMedGoogle Scholar
  3. Anderson RG (1998). The caveolae membrane system. Annu Rev Biochem 67: 199–225.PubMedCrossRefGoogle Scholar
  4. Bainbridge FA (1915). The influence of venous filling upon the rate of the heart. J Physiol 50, 65–84.PubMedGoogle Scholar
  5. Balijepalli RC, Foell JD, Hall DD, Hell JW, & Kamp TJ (2006). Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A 103, 7500–7505.PubMedCrossRefGoogle Scholar
  6. Bardswell S & Kentish J (2004). A role for NO in the slow force response to a length change in cardiac muscle. J Physiol 557P, PC6.Google Scholar
  7. Bardswell S & Kentish J (2005). Effect of beta-adrenoceptor stimulation on the slow force response to a length change in cardiac muscle. J Mol Cell Cardiol 39, 179–180.Google Scholar
  8. Baron W, Decker L, Colognato H, & Ffrench-Constant C (2003). Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr Biol 13, 151–155.PubMedCrossRefGoogle Scholar
  9. Baumgarten CM & Clemo HF (2003). Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 82, 25–42.PubMedCrossRefGoogle Scholar
  10. Bellott AC, Patel KC, & Burkholder TJ (2005). Reduction of caveolin-3 expression does not inhibit stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes. J Appl Physiol 98, 1554–1561.PubMedCrossRefGoogle Scholar
  11. Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, & Sward K (2003). Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 93, 839–847.PubMedCrossRefGoogle Scholar
  12. Betz RC, Schoser BG, Kasper D, Ricker K, Ramirez A, Stein V, Torbergsen T, Lee YA, Nothen MM, Wienker TF, Malin JP, Propping P, Reis A, Mortier W, Jentsch TJ, Vorgerd M, & Kubisch C (2001). Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Nat Genet 28, 218–219.PubMedCrossRefGoogle Scholar
  13. Boivin B, Villeneuve LR, Farhat N, Chevalier D, & Allen BG (2005). Sub-cellular distribution of endothelin signaling pathway components in ventricular myocytes and heart: lack of preformed caveolar signalosomes. J Mol Cell Cardiol 38, 665–676.PubMedCrossRefGoogle Scholar
  14. Bossuyt J, Taylor BE, James-Kracke M, & Hale CC (2002). The cardiac sodium-calcium exchanger associates with caveolin-3. Ann N Y Acad Sci 976: 197–204.PubMedCrossRefGoogle Scholar
  15. Boyd NL, Park H, Yi H, Boo YC, Sorescu GP, Sykes M, & Jo H (2003). Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285, H1113-H1122.PubMedGoogle Scholar
  16. Boyett MR, Frampton JE, & Kirby MS (1991). The length, width and volume of isolated rat and ferret ventricular myocytes during twitch contractions and changes in osmotic strength. Exp Physiol 76, 259–270.PubMedGoogle Scholar
  17. Browe DM & Baumgarten CM (2003). Stretch of beta 1 integrin activates an outwardly rectifying chloride current via FAK and Src in rabbit ventricular myocytes. J Gen Physiol 122, 689–702.PubMedCrossRefGoogle Scholar
  18. Calaghan S (2006). Disruption of caveolae converts local beta2 adrenoceptor signalling to a more diffuse global signal in the rat ventricular myocyte. Proc Physiol Soc 3, C54.Google Scholar
  19. Calaghan S & White E (2004). Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart. J Physiol 559, 205–214.PubMedCrossRefGoogle Scholar
  20. Calaghan S & White E (2006). Caveolae modulate excitation-contraction coupling and beta2-adrenergic signalling in adult rat ventricular myocytes. Cardiovasc Res 69, 816–824.PubMedCrossRefGoogle Scholar
  21. Calaghan SC, Belus A, & White E (2003). Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Prog Biophys Mol Biol 82, 81–95.PubMedCrossRefGoogle Scholar
  22. Calaghan SC, Colyer J, & White E (1999). Cyclic AMP but not phosphorylation of phospholamban contributes to the slow inotropic response to stretch in ferret papillary muscle. Pflugers Arch 437, 780–782.PubMedCrossRefGoogle Scholar
  23. Calaghan SC & Taggart MJ (2006). Compartmentalized signaling in cardiomyocyte lipid domains-Do structure and function match up? J Mol Cell Cardiol 41, 1–3.PubMedCrossRefGoogle Scholar
  24. Calaghan SC & White E (2001). Contribution of angiotensin II, endothelin 1 and the endothelium to the slow inotropic response to stretch in ferret papillary muscle. Pflugers Arch 441, 514–520.PubMedCrossRefGoogle Scholar
  25. Calaghan SC, White E, Bedut S, & Le Guennec JY (2000). Cytochalasin D reduces Ca2+ sensitivity and maximum tension via interactions with myofilaments in skinned rat cardiac myocytes. J Physiol 529 Pt 2: 405–411.PubMedCrossRefGoogle Scholar
  26. Cao H, Courchesne WE, & Mastick CC (2002). A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem 277, 8771–8774.PubMedCrossRefGoogle Scholar
  27. Cazorla O, Wu Y, Irving TC, & Granzier H (2001). Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88, 1028–1035.PubMedCrossRefGoogle Scholar
  28. Chen-Izu Y, Xiao RP, Izu LT, Cheng H, Kuschel M, Spurgeon H, & Lakatta EG (2000). G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels. Biophys J 79, 2547–2556.PubMedCrossRefGoogle Scholar
  29. Clemo HF, Stambler BS, & Baumgarten CM (1999). Swelling-activated chloride current is persistently activated in ventricular myocytes from dogs with tachycardia-induced congestive heart failure. Circ Res 84, 157–165.PubMedGoogle Scholar
  30. Cohen AW, Hnasko R, Schubert W, & Lisanti MP (2004). Role of caveolae and caveolins in health and disease. Physiol Rev 84, 1341–1379.PubMedCrossRefGoogle Scholar
  31. Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira de SA, Kitsis RN, Russell RG, Weiss LM, Tang B, Jelicks LA, Factor SM, Shtutin V, Tanowitz HB, & Lisanti MP (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284, C457-C474.PubMedGoogle Scholar
  32. Cooper PJ, Lei M, Cheng LX, & Kohl P (2000). Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol 89, 2099–2104.PubMedGoogle Scholar
  33. Couet J, Li S, Okamoto T, Ikezu T, & Lisanti MP (1997). Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272, 6525–6533.PubMedCrossRefGoogle Scholar
  34. Davies PF (1995). Flow-mediated endothelial mechanotransduction. Physiol Rev 75, 519–560.PubMedGoogle Scholar
  35. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, & Wilson E (2001). Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 281, H1835-H1862.PubMedGoogle Scholar
  36. del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-Garcia A, Anderson RG, & Schwartz MA (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7, 901–908.PubMedCrossRefGoogle Scholar
  37. Dulhunty AF & Franzini-Armstrong C (1975). The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J Physiol 250, 513–539.PubMedGoogle Scholar
  38. Dupree P, Parton RG, Raposo G, Kurzchalia TV, & Simons K (1993). Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J 12, 1597–1605.PubMedGoogle Scholar
  39. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, & Michel T (1996). Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271, 22810–22814.PubMedCrossRefGoogle Scholar
  40. Feron O, Smith TW, Michel T, & Kelly RA (1997). Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 272, 17744–17748.PubMedCrossRefGoogle Scholar
  41. Fliegel L & Karmazyn M (2004). The cardiac Na-H exchanger: a key downstream mediator for the cellular hypertrophic effects of paracrine, autocrine and hormonal factors. Biochem Cell Biol 82, 626–635.PubMedCrossRefGoogle Scholar
  42. Foell JD, Balijepalli RC, Lomax J, Shi M, Wang J, Walker JW, Hell JW, & Kamp TJ (2006). Regulation of cardiac L-type calcium channel by non-receptor tyrosine kinases localised to caveolae. Biophys J (abs) 779-Plat.Google Scholar
  43. Frank O (1895). Zur dynamik des herzmusckels. K Biol 32, 370–447.Google Scholar
  44. Fujimoto T (1993). Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120, 1147–1157.PubMedCrossRefGoogle Scholar
  45. Fujita T, Toya Y, Iwatsubo K, Onda T, Kimura K, Umemura S, & Ishikawa Y (2001). Accumulation of molecules involved in alpha1-adrenergic signal within caveolae: caveolin expression and the development of cardiac hypertrophy. Cardiovasc Res 51, 709–716.PubMedCrossRefGoogle Scholar
  46. Gabella G (1976). Quantitative morphological study of smooth muscle cells of the guinea-pig taenia coli. Cell Tissue Res 170, 161–186.PubMedGoogle Scholar
  47. Gabella G (1978). Inpocketings of the cell membrane (caveolae) in the rat myocardium. J Ultrastruct Res 65, 135–147.PubMedCrossRefGoogle Scholar
  48. Gabella G & Blundell D (1978). Effect of stretch and contraction on caveolae of smooth muscle cells. Cell Tissue Res 190, 255–271.PubMedCrossRefGoogle Scholar
  49. Galbiati F, Razani B, & Lisanti MP (2001). Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med 7, 435–441.PubMedCrossRefGoogle Scholar
  50. Hagiwara Y, Sasaoka T, Araishi K, Imamura M, Yorifuji H, Nonaka I, Ozawa E, & Kikuchi T (2000). Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet 9, 3047–3054.PubMedCrossRefGoogle Scholar
  51. Harada M, Itoh H, Nakagawa O, Ogawa Y, Miyamoto Y, Kuwahara K, Ogawa E, Igaki T, Yamashita J, Masuda I, Yoshimasa T, Tanaka I, Saito Y, & Nakao K (1997). Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation 96, 3737–3744.PubMedGoogle Scholar
  52. Harder T, Kellner R, Parton RG, & Gruenberg J (1997). Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol Biol Cell 8, 533–545.PubMedGoogle Scholar
  53. Head BP, Patel HH, Roth DM, Lai NC, Niesman IR, Farquhar MG, & Insel PA (2005). G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem 280, 31036–31044.PubMedCrossRefGoogle Scholar
  54. Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, & Kamkin A (2003). Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Prog Biophys Mol Biol 82, 43–56.PubMedCrossRefGoogle Scholar
  55. Ishikawa Y & Homcy CJ (1997). The adenylyl cyclases as integrators of transmembrane signal transduction. Circ Res 80, 297–304.PubMedGoogle Scholar
  56. Isshiki M, Ando J, Korenaga R, Kogo H, Fujimoto T, Fujita T, & Kamiya A (1998). Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proc Natl Acad Sci U S A 95, 5009–5014.PubMedCrossRefGoogle Scholar
  57. Kawabe J, Okumura S, Lee MC, Sadoshima J, & Ishikawa Y (2004). Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 286, H1845-H1852.PubMedCrossRefGoogle Scholar
  58. Kawamura S, Miyamoto S, & Brown JH (2003). Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem 278, 31111–31117.PubMedCrossRefGoogle Scholar
  59. Kentish JC & Wrzosek A (1998). Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. J Physiol 506, 431–444.PubMedCrossRefGoogle Scholar
  60. Klausen TK, Hougaard C, Hoffmann EK, & Pedersen SF (2006). Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. Am J Physiol Cell Physiol 291, C757-C771.PubMedCrossRefGoogle Scholar
  61. Knoll R, Hoshijima M, & Chien K (2003). Cardiac mechanotransduction and implications for heart disease. J Mol Med 81, 750–756.PubMedCrossRefGoogle Scholar
  62. Kohl P, Cooper PJ, & Holloway H (2003). Effects of acute ventricular volume manipulation on in situ cardiomyocyte cell membrane configuration. Prog Biophys Mol Biol 82, 221–227.PubMedCrossRefGoogle Scholar
  63. Kordylewski L, Goings GE, & Page E (1993). Rat atrial myocyte plasmalemmal caveolae in situ. Reversible experimental increases in caveolar size and in surface density of caveolar necks. Circ Res 73, 135–146.PubMedGoogle Scholar
  64. Lammerding J, Kamm RD, & Lee RT (2004). Mechanotransduction in cardiac myocytes. Ann N Y Acad Sci 1015: 53–70.PubMedCrossRefGoogle Scholar
  65. Lepple-Wienhues A, Szabo I, Laun T, Kaba NK, Gulbins E, & Lang F (1998). The tyrosine kinase p56lck mediates activation of swelling-induced chloride channels in lymphocytes. J Cell Biol 141, 281–286.PubMedCrossRefGoogle Scholar
  66. Levitan I, Christian AE, Tulenko TN, & Rothblat GH (2000). Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol 115, 405–416.PubMedCrossRefGoogle Scholar
  67. Li S, Couet J, & Lisanti MP (1996). Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271, 29182–29190.PubMedCrossRefGoogle Scholar
  68. Liu J, Oh P, Horner T, Rogers RA, & Schnitzer JE (1997). Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains. J Biol Chem 272, 7211–7222.PubMedCrossRefGoogle Scholar
  69. Lohn M, Furstenau M, Sagach V, Elger M, Schulze W, Luft FC, Haller H, & Gollasch M (2000). Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circ Res 87, 1034–1039.PubMedGoogle Scholar
  70. Maguy A, Hebert TE, & Nattel S (2006). Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc Res 69, 798–807.PubMedCrossRefGoogle Scholar
  71. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, & Hamill OP (2005). TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7, 179–185.PubMedCrossRefGoogle Scholar
  72. Martin S (2006). Caveolae and cell swelling. Focus on ‘‘Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells’’. Am J Physiol Cell Physiol 290, C1273-C1274.PubMedCrossRefGoogle Scholar
  73. Michel JB, Feron O, Sacks D, & Michel T (1997). Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 272, 15583–15586.PubMedCrossRefGoogle Scholar
  74. Morris JB, Huynh H, Vasilevski O, & Woodcock EA (2006). Alpha1-adrenergic receptor signaling is localized to caveolae in neonatal rat cardiomyocytes. J Mol Cell Cardiol 41, 17–25.PubMedCrossRefGoogle Scholar
  75. Moss RL & Fitzsimons DP (2002). Frank-Starling relationship: long on importance, short on mechanism. Circ Res 90, 11–13.PubMedCrossRefGoogle Scholar
  76. Oka N, Yamamoto M, Schwencke C, Kawabe J, Ebina T, Ohno S, Couet J, Lisanti MP, & Ishikawa Y (1997). Caveolin interaction with protein kinase C. Isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J Biol Chem 272, 33416–33421.PubMedCrossRefGoogle Scholar
  77. Okada Y (1999). A scaffolding for regulation of volume-sensitive Cl- channels. J Physiol 520 Pt 1, 2.PubMedCrossRefGoogle Scholar
  78. Okamoto T, Schlegel A, Scherer PE, & Lisanti MP (1998). Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273, 5419–5422.PubMedCrossRefGoogle Scholar
  79. Ostrom RS & Insel PA (2004). The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143, 235–245.PubMedCrossRefGoogle Scholar
  80. Page E (1978). Quantitative ultrastructural analysis in cardiac membrane physiology. Am J Physiol 235, C147-C158.PubMedGoogle Scholar
  81. Park H, Go YM, Darji R, Choi JW, Lisanti MP, Maland MC, & Jo H (2000). Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am J Physiol Heart Circ Physiol 278, H1285-H1293.PubMedGoogle Scholar
  82. Park H, Go YM, St John PL, Maland MC, Lisanti MP, Abrahamson DR, & Jo H (1998). Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J Biol Chem 273, 32304–32311.PubMedCrossRefGoogle Scholar
  83. Patterson S & Starling EH (1914). On the mechanical factors which determine the output of the ventricles. J Physiol 48, 337–357.Google Scholar
  84. Perez NG, de Hurtado MC, & Cingolani HE (2001). Reverse mode of the Na+-Ca2+ exchange after myocardial stretch: underlying mechanism of the slow force response. Circ Res 88, 376–382.PubMedGoogle Scholar
  85. Popescu LM, Diculescu I, Zelck U, & Ionescu N (1974). Ultrastructural distribution of calcium in smooth muscle cells of guinea-pig taenia coli. A correlated electron microscopic and quantitative study. Cell Tissue Res 154, 357–378.PubMedCrossRefGoogle Scholar
  86. Prescott L & Brightman MW (1976). The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations. Tissue Cell 8, 248–258.PubMedCrossRefGoogle Scholar
  87. Radel C & Rizzo V (2005). Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am J Physiol Heart Circ Physiol 288, H936-H945.PubMedCrossRefGoogle Scholar
  88. Razani B, Woodman SE, & Lisanti MP (2002). Caveolae: from cell biology to animal physiology. Pharmacol Rev 54, 431–467.PubMedCrossRefGoogle Scholar
  89. Rizzo V, Morton C, DePaola N, Schnitzer JE, & Davies PF (2003). Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285, H1720-H1729.PubMedGoogle Scholar
  90. Rizzo V, Sung A, Oh P, & Schnitzer JE (1998). Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273, 26323–26329.PubMedCrossRefGoogle Scholar
  91. Ross RS (2004). Molecular and mechanical synergy: cross-talk between integrins and growth factor receptors. Cardiovasc Res 63, 381–390.PubMedCrossRefGoogle Scholar
  92. Ross RS & Borg TK (2001). Integrins and the myocardium. Circ Res 88, 1112–1119.PubMedCrossRefGoogle Scholar
  93. Ruwhof C & van der Laarse A (2000). Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47, 23–37.PubMedCrossRefGoogle Scholar
  94. Rybin VO, Pak E, Alcott S, & Steinberg SF (2003). Developmental changes in beta2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. Mol Pharmacol 63, 1338–1348.PubMedCrossRefGoogle Scholar
  95. Rybin VO, Xu X, Lisanti MP, & Steinberg SF (2000). Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275, 41447–41457.PubMedCrossRefGoogle Scholar
  96. Sadoshima J & Izumo S (1997). The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59: 551–571.PubMedCrossRefGoogle Scholar
  97. Sargiacomo M, Scherer PE, Tang Z, Kubler E, Song KS, Sanders MC, & Lisanti MP (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci U S A 92, 9407–9411.PubMedCrossRefGoogle Scholar
  98. Sbaa E, Frerart F, & Feron O (2005). The double regulation of endothelial nitric oxide synthase by caveolae and caveolin: a paradox solved through the study of angiogenesis. Trends Cardiovasc Med 15, 157–162.PubMedCrossRefGoogle Scholar
  99. Scriven DR, Klimek A, Asghari P, Bellve K, & Moore ED (2005). Caveolin-3 is adjacent to a group of extradyadic ryanodine receptors. Biophys J 89, 1893–1901.PubMedCrossRefGoogle Scholar
  100. Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, & Braun-Dullaeus RC (2005). Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96, 635–642.PubMedCrossRefGoogle Scholar
  101. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson RG, & Michel T (1996). Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem 271, 6518–6522.PubMedCrossRefGoogle Scholar
  102. Shaw A & Xu Q (2003). Biomechanical stress-induced signaling in smooth muscle cells: an update. Curr Vasc Pharmacol 1, 41–58.PubMedCrossRefGoogle Scholar
  103. Simons K & Toomre D (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31–39.PubMedCrossRefGoogle Scholar
  104. Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, & Lisanti MP (1999). Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19, 7289–7304.PubMedGoogle Scholar
  105. Sorota S (1995). Tyrosine protein kinase inhibitors prevent activation of cardiac swelling-induced chloride current. Pflugers Arch 431, 178–185.PubMedCrossRefGoogle Scholar
  106. Stahlhut M & van Deurs B (2000). Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Biol Cell 11, 325–337.PubMedGoogle Scholar
  107. Steinberg SF, Goldberg M, & Rybin VO (1995). Protein kinase C isoform diversity in the heart. J Mol Cell Cardiol 27, 141–153.PubMedGoogle Scholar
  108. Thomsen P, Roepstorff K, Stahlhut M, & van DB (2002). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13, 238–250.PubMedCrossRefGoogle Scholar
  109. Trouet D, Carton I, Hermans D, Droogmans G, Nilius B, & Eggermont J (2001a). Inhibition of VRAC by c-Src tyrosine kinase targeted to caveolae is mediated by the Src homology domains. Am J Physiol Cell Physiol 281, C248-C256.Google Scholar
  110. Trouet D, Hermans D, Droogmans G, Nilius B, & Eggermont J (2001b). Inhibition of volume-regulated anion channels by dominant-negative caveolin-1. Biochem Biophys Res Commun 284, 461–465.CrossRefGoogle Scholar
  111. Trouet D, Nilius B, Jacobs A, Remacle C, Droogmans G, & Eggermont J (1999). Caveolin-1 modulates the activity of the volume-regulated chloride channel. J Physiol 520 Pt 1, 113–119.PubMedCrossRefGoogle Scholar
  112. Vandenberg JI, Rees SA, Wright AR, & Powell T (1996). Cell swelling and ion transport pathways in cardiac myocytes. Cardiovasc Res 32, 85–97.PubMedCrossRefGoogle Scholar
  113. Venema VJ, Ju H, Zou R, & Venema RC (1997). Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272, 28187–28190.PubMedCrossRefGoogle Scholar
  114. Vila Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand JL, & Sollott SJ (2001). Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3, 867–873.CrossRefGoogle Scholar
  115. Voets T, Manolopoulos V, Eggermont J, Ellory C, Droogmans G, & Nilius B (1998). Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. J Physiol 506, 341–352.PubMedCrossRefGoogle Scholar
  116. von Lewinski D, Stumme B, Maier LS, Luers C, Bers DM, & Pieske B (2003). Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. Cardiovasc Res 57, 1052–1061.CrossRefGoogle Scholar
  117. Willoughby D, Masada N, Crossthwaite AJ, Ciruela A, & Cooper DM (2005). Localized Na+/H+ exchanger 1 expression protects Ca2+-regulated adenylyl cyclases from changes in intracellular pH. J Biol Chem 280, 30864–30872.PubMedCrossRefGoogle Scholar
  118. Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J, Tang B, Jelicks LA, Kitsis RN, Christ GJ, Factor SM, Tanowitz HB, & Lisanti MP (2002). Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277, 38988–38997.PubMedCrossRefGoogle Scholar
  119. Xiang Y, Rybin VO, Steinberg SF, & Kobilka B (2002). Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem 277, 34280–34286.PubMedCrossRefGoogle Scholar
  120. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K, & . (1995). Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J Clin Invest 96, 438–446.PubMedCrossRefGoogle Scholar
  121. Yamazaki T, Komuro I, Zou Y, Kudoh S, Mizuno T, Hiroi Y, Shiojima I, Takano H, Kinugawa K, Kohmoto O, Takahashi T, & Yazaki Y (1997). Protein kinase A and protein kinase C synergistically activate the Raf-1 kinase/mitogen-activated protein kinase cascade in neonatal rat cardiomyocytes. J Mol Cell Cardiol 29, 2491–2501.PubMedCrossRefGoogle Scholar
  122. Yarbrough TL, Lu T, Lee HC, & Shibata EF (2002). Localization of cardiac sodium channels in caveolin-rich membrane domains: regulation of sodium current amplitude. Circ Res 90, 443–449.PubMedCrossRefGoogle Scholar
  123. Zacharias DA, Violin JD, Newton AC, & Tsien RY (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916.PubMedCrossRefGoogle Scholar
  124. Zeidan A, Broman J, Hellstrand P, & Sward K (2003). Cholesterol dependence of vascular ERK1/2 activation and growth in response to stretch: role of endothelin-1. Arterioscler Thromb Vasc Biol 23, 1528–1534.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Sarah Calaghan

There are no affiliations available

Personalised recommendations