Ecological requirements of Ostracoda (Crustacea) in a heavily polluted shallow lake, Lake Yeniçağa (Bolu, Turkey)

  • Okan Külköylüoğlu
  • Muzaffer Dügel
  • Mustafa Kılıç
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 197)

Abstract

Although the area of Lake Yeniçağa is a potential candidate for RAMSAR convention, several anthropogenic factors compromise its biological diversity. This is mostly due to nutrient- rich water released from both point and nonpoint sources. Thirteen ostracod taxa (Candona neglecta, C. candida, Ilyocypris bradyi, Darwinula stevensoni, Cypridopsis vidua, Physocypria kraepelini, Cypria ophtalmica, Prionocypris zenkeri, Eucypris virens, Herpetocypris reptans, Pseudocandona compressa, Fabaeformiscandona fabaeformis Potamocypris cf. fulva) were found during this study. Potamocypris cf. fulva is a new record for the Turkish freshwater ostracod fauna. The first nine of these species have broad geographic ranges, implying high tolerance levels to different environmental variables. Based on the estimated species optima and tolerance levels, two species exhibited higher effective number of occurrences (C. neglecta, and D. stevensoni, respectively) than the other species. Three species (C. neglecta, D. stevensoni, I. bradyi) did not show significant correlation with any environmental variable we used. Both Canonical correspondence (CCA) and Pearson correlation analyses showed that temperature was the most effective predictor of species occurrence, followed by electrical conductivity and redox potential. In contrast, pH and dissolved oxygen of water were the least effective predictors. Approximately 71% of the correlation between community composition and environmental variables was explained by the first axis of the CCA diagram, which had a relatively low (7.7%) cumulative variance of species. The lower (560 µg/l) and the upper (2030 µg/l) levels of ammonia (NH3) exceeded the limits during winter season. The concentrations of total coliform and Escherichia coli bacteria were measured up to 10 × 107 cfu/ml and 10 × 103 cfu/ml, respectively. Results of physicochemical measurements, microbiological counts, and species data indicate that water quality of Lake Yeniçağa has been rapidly deteriorated by anthropogenic factors that are the main threat for not only the lake’s aquatic diversity but also human health around the lake.

Keywords

Ostracoda Tolerance Optimum estimates CCA Conservation Eutrophication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anadón, P., P. De Deckker & R. Juliá, 1986. The Pleistocene lake deposits of the NE Baza Basin (Spain): salinity variations and ostracods succession. Hydrobiologia 143: 199–208.CrossRefGoogle Scholar
  2. APHA., 1989. Standard Methods for the Examination of Water and Waste Water. American Water Works Association and Water Pollution Control Federation. American Public Health Association, Washington D.C.Google Scholar
  3. Balık, S., 1995. Freshwater fish in Anatolia, Turkey. Biological Conservation 2: 213–223.CrossRefGoogle Scholar
  4. Beklioğlu, M., O. İnce & İ. Tüzün, 2003. Restoration of eutrophic Lake Eymir, Turkey, by external nutrient loading control and biomanipulation. I. First case study on a warm temperate lake. Hydrobiologia 489: 93–105.CrossRefGoogle Scholar
  5. Benson, R. H., 1990. Ostracoda and the discovery of global Cainozoic palaeoceanographical events. In Whatley, R. & C. Maybury (eds), Ostracoda and Global Events. Chapman and Hall University Press, Cambridge, London, 41–59.Google Scholar
  6. Beug, H.-J., 1967. Contributions to the postglacial vegetational history of northern Turkey. In Cushing, E. J. & H. E. Wright (eds), Quaternary Paleoecology. Yale University Press, New Haven, 349–356.Google Scholar
  7. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. Ter Braak, 1990. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London 327: 263–278.CrossRefGoogle Scholar
  8. Bootsma, M. C., A. Barendregt & J. C. A. van Alphen, 1999. Effectiveness of reducing external nutrient load entering an eutrophicated shallow lake ecosystem in the Naardermeer nature reserve, The Netherlands. Biological Conservation 90: 193–201.CrossRefGoogle Scholar
  9. Bottema, S., H. Woldring & B. Aytuğ, 1993. Late Quaternary vegetation history and climate in northern Turkey. Palaeohistoria 35/36: 13–72.Google Scholar
  10. Bronshtein, Z. S., 1947. Fresh-water Ostracoda. Fauna of the USSR, Crustaceans, Vol. 2, No. 1. Cladocopa and Platycopa. Russian Translation Series, 64. Academy of Sciences of the USSR Publishers, Moscow. 1988.Google Scholar
  11. Chan, T. U., B. J. Robson & D. P. Hamilton, 2003. Modelling phytoplankton succession and biomass in seasonal West Australian estuary. Verhandlungen der Internationalen Vereinigung der Limnologie 28:1086–1088.Google Scholar
  12. Chaton, P. F., P. Ravanel, M. Tissut & J. C. Meyran, 2002. Toxicity and bioaccumulation of Fipronil in the nontarget arthropodan fauna associated with Subalpine mosquito breeding sites. Ecotoxicology and Environmental Safety 52, 8–12.PubMedCrossRefGoogle Scholar
  13. De Deckker, P., 1981. Ostracods of Athalassic saline lakes. Hydrobiologia 81: 131–144.CrossRefGoogle Scholar
  14. Delorme, L. D., 1991. Ostracoda. In Thorpe, J. H. & A. P. Covich (eds), Ecology and Classification of North American Invertebrates. Academic Press, San Diego, London, 691–722.Google Scholar
  15. Erinç, S., T. Bilgin & M. Bener, 1961. Çağa depresyonu ve boğazi. İstanbul Üniversitesi Coğrafya Enstitü Dergisi 6: 170–173.Google Scholar
  16. Ertan, A., A. Kılıç & M. Kasparek, 1989. Türkiye’nin önemli kus alanları [Important Bird Areas of Turkey]. Istanbul, 160 + xvi pp.Google Scholar
  17. Frenzel, P. & P. Oertel, 2002. Die rezenten Ostrakoden und Foraminiferen des Strelasundes (südliche Ostsee). (The recent ostracods and foraminifera of the Strelasund (southern Baltic Sea). Rostocker Meeresbiologische Beiträge 11: 23–37.Google Scholar
  18. Green, G. D., 1994. Freshwater Ostracoda (Crustacea) from the Southern Interior of British Columbia. Royal British Columbia Museum.Google Scholar
  19. Griffiths, H. I., J. M. Reed, M. J. Leng, S. Ryan & S. Petkovski, 2002. The recent palaeoecology and conservation status of Balkan Lake Dojran. Biological Conservation 104: 35–49.CrossRefGoogle Scholar
  20. Guo, H. Y, J. G. Zhu, X. R. Wang, Z. R. Wu & Z. Zhang, 2004. Case Study on Nitrogen and Phosphorus Emissions from Paddy Field in Taihu Region. Environmental Geochemistry and Health 26: 209–219.PubMedCrossRefGoogle Scholar
  21. Gülen, D., 1977. Contribution to the Knowledge of the Freshwater Ostracoda Fauna of Turkey. Istanbul Universitesi Fen Fakültesi Mecmuası, Seri B, 42: 101–106.Google Scholar
  22. Henderson, P. A., 1990. Freshwater Ostracoda: Keys and Notes for the Identification of the Species. Synopses of the British Fauna (New Series). The Linnean Society of London and The Estuarine and Coastal Sciences Association, London.Google Scholar
  23. Hurlbert, S. J., 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54: 187–211.CrossRefGoogle Scholar
  24. Juggins, S. & C. J. F. Ter Braak, 1992. CALIBRATE — A Program for Species — Environmental Calibration by [Weighted Averaging] Partial Least Squares Regression. Environmental Change Research Center, University College, London.Google Scholar
  25. Julià, R., F. Burjachs, M. J. Dasí, F. Mezquita, M. R. Miracle, J. R. Roca, G. Seret & E. Vicente, 1998. Meromixis origin and recent trophic evolution in the Spanish mountain lake La Cruz. Aquatic Sciences 60: 279–299.CrossRefGoogle Scholar
  26. Kavuşan, G. & T. Karaseyfioğlu, 1997. Geological setting of Yeniçağa peat deposit, Bolu-Turkey. 3rd European Coal Conference. European Coal Geology 293–299.Google Scholar
  27. Kavuşan, G. & A. Serdaroğlu, 1997. The physical and chemical properties of Yeniçağa-peat deposit, Bolu-Turkey. 3rd European Coal Conference. European Coal Geology 301–310.Google Scholar
  28. Kılınç, S., 2003. The phytoplankton community of Yeniçağa Lake (Bolu, Turkey). Nova Hedwigia 76: 429–442.CrossRefGoogle Scholar
  29. Kiss, A., 2001. Limnological investigations of small water bodies in the Pilis Biosphere Reserve, Hungary. Part II. Kőhegyi-tó and Unkás-tócsa. Opuscula Zoologica Budapest 33: 67–74.Google Scholar
  30. Kiss, A., 2002. The cladocera, ostracoda and copepoda fauna of the Fehér-tó (Fertő-Hansaág National Park). In Mahunka, S. (ed.), The Fauna of the Fertő-Hanság National Park. Hungarian Natural History Museum, Budapest, 245–248.Google Scholar
  31. Knox, L. W. & E. A. Gordon, 1999. Ostracodes as indicators of brackish water environments in the Catskill Magnafacies (Devonian) of New York State, Palaeogeography, Palaeoclimatology, Palaeoecology 148: 9–22.CrossRefGoogle Scholar
  32. Külköylüoğlu, O., 1998. Freshwater Ostracoda (Crustacea) and their quarterly occurrence in Samlar Lake (Istanbul, Turkey). Limnologica 28: 229–235.Google Scholar
  33. Külköylüoğlu, O., 1999. Taxonomy, ecology and biogeographic distribution of spring water Ostracoda (Crustacea) in Nevada. Ph.D. dissertation. Program in Ecology, Evolution and Conservation Biology. University of Nevada, Reno.Google Scholar
  34. Külköylüoğlu, O., 2000. The importance of cosmopolitan and indicator species of Ostracoda (Crustacea) in Turkey based on some water parameters. Sinop Water Product Conference 2000: 421–437. (Abstract in English).Google Scholar
  35. Külköylüoğlu, O., 2003. Ecology of freshwater Ostracoda (Crustacea) from lakes and reservoirs in Bolu, Turkey. Journal of Freshwater Ecology 18: 343–347.Google Scholar
  36. Külköylüoğlu, O., 2004. On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey. Ecological Indicators 4: 139–147.CrossRefGoogle Scholar
  37. Külköylüoğlu, O., 2005. Factors affecting the occurrence of Ostracoda (Crustacea) in the Yumrukaya Reedbeds (Bolu, Turkey). Wetlands 25: 224–227.CrossRefGoogle Scholar
  38. Külköylüoğlu, O.. & M. Dügel, 2004. Ecology and spatiotemporal patterns of Ostracoda (Crustacea) from Lake Gölcük (Bolu, Turkey). Archiv für Hydrobiologie 100: 67–83.CrossRefGoogle Scholar
  39. Külköylüoğlu, O., C. Meisch & W. R. Rust, 2003. A new genus (Thermopsis thermophila n. gen.) of Ostracoda (Crustacea) from hot springs of western North America. Hydrobiologia 499: 113–123.CrossRefGoogle Scholar
  40. Lahn, E., 1948. Türkiye göllerinin jeolojisi ve jeomorfolojisi hakkında bir etüd. Maden Tetkik Arama Enstitüsü Yayınları. Seri B. No. 12. Ankara. p. 19. (in Turkish).Google Scholar
  41. Lim, R. P. & M. C. Wong, 1986. The effects of pesticides on the population dynamics and production of Stenocypris major Baird (Ostracoda) in ricefields. Archiv für Hydrobiologie 106: 421–427.Google Scholar
  42. Martens, K. & F. Behen, 1994. A checklist of the recent non-marine ostracods (Crustacea, Ostracoda) from the inland waters of South America and adjacent islands. Travaux Scientifiques du Musée National d’Historie Naturelle de Luxembourg 22:1–81.Google Scholar
  43. Mbahinzireki, G., F. Uiblein & H. Winkler, 1991. Microhabitat selection of ostracods in relation to predation and food. Hydrobiologia 222: 115–119.CrossRefGoogle Scholar
  44. McFadden, M. A., H. T. Mullins, W. P. Patterson & W. T. Anderson, 2004. Paleoproductivity of eastern Lake Ontario over the past 10,000 years. Limnology and Oceanography 49: 1570–1581.CrossRefGoogle Scholar
  45. Meffee, G. K. & C. R. Carroll, 1994. Principles of Conservation Biology. Sinauer Press, Sunderland, U.S.A.Google Scholar
  46. Meisch, C., 2000. Freshwater Ostracoda of western and central Europe. In Schwoerbel, J. & P. Zwick (eds), Süßwasserfauna von Mitteleuropa 8/3. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  47. Mezquita, F., G. Tapia & J. R. Roca, 1999a. Ostracoda from springs on the eastern Iberian Peninsula: ecology, biogeography and palaeolimnological implications. Palaeogeography Palaeoclimatology Palaeoecology 148: 65–85.CrossRefGoogle Scholar
  48. Mezquita, F., R. Hernandez & J. Rueda, 1999b. Ecology and distribution of ostracods in a polluted Mediterranean river. Palaeogeography Palaeoclimatology Palaeoecology 148: 87–103.CrossRefGoogle Scholar
  49. Mezquita, F., H. I. Griffiths, M. I. Dominguez & M. A. Lozana-Quilis, 2001. Ostracoda (Crustacea) as ecological indicators: a case study from Iberian Mediterranean brooks. Archiv für Hydrobiologie 150:545–560.Google Scholar
  50. Milhau, B., N. Dekens & K. Wouters, 1997. Evaluation de l’utilisation des ostracodes comme bioindicateurs potentiels de pollution: application aux eaux de la Slack (Boulonnais, France). Ecologie 28: 3–12.Google Scholar
  51. Neale, J. W., 1988. Ostracods and Paleosalinity Reconstruction. In De Deckker, P., J. P. Colin & J. P. Peypouquet (eds), Ostracoda in the Earth Sciences. Elsevier Publications, The Netherlands.Google Scholar
  52. Pekcan, N., 1996. Yeniçağa depresyonunun (Bolu) jeomorfolojik olusum ve gelisimi. İstanbul Üniversitesi Coğrafya Dergisi. (Ayrı basım), 113–122 (In Turkish).Google Scholar
  53. Ranta, E., 1979. Population biology of Darwinula stevensoni (Crustacea, Ostracoda) in an oligotrophic lake. Annales Zoologici Fennici 16: 28–35.Google Scholar
  54. Roca, J. R. & A. Baltanás, 1993. Ecology and distribution of Ostracoda in Pyrenean springs. Journal of Crustacean Biology 13: 165–174.CrossRefGoogle Scholar
  55. Roca, J. R., A. Baltanás & F. Uiblein, 1993. Adaptive responses in Cypridopsis vidua (Crustacea: Ostracoda) to food and shelter offered by a macrophyte (Chara fragilis). Hydrobiologia 262: 127–131.CrossRefGoogle Scholar
  56. Roca, J. R., F. Mezquita, J. Rueda, A. Camacho & M. R. Miracle, 2000. Endorheic versus karstic lake: patterns of ostracod distributions and lake typology in a Mediterranean landscape (Castilla — La Mancha, Spain). Marine and Freshwater Resources 51: 311–319.CrossRefGoogle Scholar
  57. Rossetti, G., M. Bartoli & K. Martens, 2004. Limnological characteristics and recent ostracods (Crustacea, Ostracoda) of freshwater wetlands in the Parco Oglio Sud (Northern Italy). International Journal of Limnology 40: 329–341.CrossRefGoogle Scholar
  58. Särkkä, J., L. Levonen & J. Mäkelä, 1997. Meiofauna of springs in Finland in relation to environmental factors. Hydrobiologia 347: 139–150.CrossRefGoogle Scholar
  59. Saygı-Basbuğ, Y. & F. Y. Demirkalp, 2004a. Primary production in shallow eutrophic Yenicıagıa Lake (Bolu, Turkey). Fresenius Environmental Bulletin 13: 98–104.Google Scholar
  60. Saygı-Başbuğ, Y. & F. Y. Demirkalp, 2004b. Trophic status of shallow Yeniçağa Lake (Bolu, Turkey) in relation to physical and chemical environment. Fresenius Environmental Bulletin 13: 358–393.Google Scholar
  61. Scharf, B. W., 1993. Ostracoda (Crustacea) from eutrophic and oligotrophic maar lakes of the Eifel (Germany) in the Late, Post Glacial. In McKenzie, K. G. & P. J. Jones (eds), Ostracoda in the earth and life sciences. Balkema, Australia, 453–463.Google Scholar
  62. Shornikov, E. I. & Y. A. Trebukhova, 2001. Ostracods of brackish and fresh waters of Southwestern coast of Peter the Great Bay. In Kasyanov, V. L., M. A. Vaschenko & D. L. Pitruk (eds), The State of Environment and Biota of the Southwestern Part of Peter the Great Bay and the Tumen River Mouth, 2002, Vol. 3. Dalnauka, Vladivostok, 56–84.Google Scholar
  63. Sümer, N., 2002. Flora of Lake Yeniçağa. MS Thesis. Abant İzzet Baysal University.Google Scholar
  64. Tan, C. O. & M. Beklioğlu, 2005. Catastrophic-like shifts in shallow Turkish lakes: a modeling approach. Ecological Modeling 183: 425–434.CrossRefGoogle Scholar
  65. Tanoğlu, A. & H. İnandık, 1952–1953. Bolu-Gerede Arasındaki Çağa Depresyonu Hakkında Küçük Bir Not. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi 3(4): 198–199.Google Scholar
  66. Ter Braak, C. J. F., 1986. Canonical correspondance analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  67. Ter Braak, C. J. F., 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.CrossRefGoogle Scholar
  68. Ter Braak, C. J. F., 1989. CANOCO — an extension of DECORANA to analyze species environment relationships. Hydrobiologia 184: 169–170.Google Scholar
  69. Ter Braak, C. J. F. & L. G. Barendregt, 1986. Weighted averaging of species indicator values: its efficiency in environmental calibration. Mathematical Biosciences 78: 57–72.CrossRefGoogle Scholar
  70. Tressler, W. L., 1959. Ostracoda. In Edmondson, W. T. (ed.), H. B. Ward & G. C. Whipple’s Freshwater Biology, 2nd edn. John Wiley & Sons, New York, 657–734.Google Scholar
  71. Victor, R. & C. H. Fernando, 1979. The freshwater ostracods (Ostracoda: Crustacea) of India. Records of the Zoological Survey of India 74: 147–242.Google Scholar
  72. Yılmaz, F. & O. Külköylüoğlu, 2006. Ecological requirements of freshwater Ostracoda (Crustacea) in Lake Aladağ (Bolu, Turkey). Ecological Research 21: 165–173.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Okan Külköylüoğlu
    • 1
  • Muzaffer Dügel
    • 1
  • Mustafa Kılıç
    • 2
  1. 1.Department of Biology, Faculty of Arts and ScienceAbant İzzet Baysal UniversityGölköy, BoluTurkey
  2. 2.Department of Biology, Zoology Building, Faculty of Scienceİstanbul UniversityBeyazıt, IstanbulTurkey

Personalised recommendations