Implications of Heat Shock Proteins in Carcinogenesis and Cancer Progression

  • Daniel R. Ciocca
  • Mariel A. Fanelli
  • F. Dario Cuello-Carrión
  • Stuart K. Calderwood
Part of the Heat Shock Proteins book series (HESP, volume 2)

Abstract

Heat shock proteins (Hsp) participate in many events related to cancer as molecular chaperones, starting from the very beginning of carcinogenesis. Several etiological factors involve the Hsp family in their mechanisms of action, including oncogenic viruses, hereditary and non hereditary alterations in tumor suppressors or oncoproteins, hypermethylation, radiation and carcinogenic agents. All of them produce changes in the Hsp response with consequences in cell proliferation, differentiation, inflammation, apoptosis, DNA repair, angiogenesis, metastasis, and drug resistance and in the immunological response mounted by the host. In this chapter we will examine the participation of the Hsp response in tumor cell transformation, either by up-regulation or down-regulation of specific Hsp. This can explain the variations in Hsp expression found in pre-neoplastic and neoplastic human tumors in different tissues and organs. These variations have important clinical consequences in cancer progression, and the exploitation of such knowledge may improve anticancer treatment strategies

Keywords

Heat shock proteins cancer etiology carcinogenesis metastasis drug resistance immunity cancer progression DNA repair prognosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adlakha, C.L., Hart, J.P., and Pizzo, S.V., 2001, Kinetics of nonproteolytic incorporation of a protein ligand into thermally activated alfa 2-macroglobulin: evidence for a novel nascent state. J Biol Chem 45:41547–41552Google Scholar
  2. Akira, S., and Takeda, K., 2004, Toll-like receptors signalling. Nat Rev Immunol 4:499–511PubMedGoogle Scholar
  3. Arispe, N., Doh, M., Simakova, O., Kurganov, B., and De Maio, A., 2004, Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636–1645PubMedGoogle Scholar
  4. Asea, A., Kraeft, S.K., Kurt-Jones, E.A., Stevenson, M.A., Chen, L.B., Finberg, R.W., Koo, G.C., and Calderwood, S.K., 2000, Hsp70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442PubMedGoogle Scholar
  5. Asea, A., Rehli, M., Kabingu, E., Boch, J.A., Bare, O., Auron, P.E., Stevenson, M.A., and Calderwood, S.K., 2002, Novel signal transduction pathway utilized by extracellular Hsp70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034PubMedGoogle Scholar
  6. Atkins, D., Lichtenfels, R., Seliger, B., 2005, Heat shock proteins in renal cell carcinomas. Contrib Nephrol 148:35–56PubMedGoogle Scholar
  7. Barreto, A., Gonzalez, J.M., Kabingu, E., Asea, A., and Fiorentino, S., 2003, Stress-induced release of HSC70 from human tumors. Cell Immunol 222:97–104PubMedGoogle Scholar
  8. Barzilai, A., and Yamamoto, K-I., 2004, DNA damage responses to oxidative stress. DNA repair 3:1109–1115.PubMedGoogle Scholar
  9. Bases, R., 2005, Clonogenicity of human leukemic cells protected from cell-lethal agents by heat shock protein 70. Cell Stress Chaperones 10:37–45PubMedGoogle Scholar
  10. Basu, S., Binder, R.J., Suto, R., Anderson, K.M., and Srivastava, P.K., 2000, Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int Immunol 12:1539–1546.PubMedGoogle Scholar
  11. Basu, S., Binder, R.J., Ramalingham, T., and Srivastava, P.K., 2001, CD91: a receptor for heat shock proteins gp96, hsp90, and calreticulin. Immunity 14:303–313PubMedGoogle Scholar
  12. Becker, T., Hartl, F.L., and Wieland, F., 2002, CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285PubMedGoogle Scholar
  13. Becker, B., Multhoff, G., Farkas, B., Wild, P.J., Landthaler, M., Stolz, W., and Vogt, T., 2004, Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp Dermatol 13:27–32PubMedGoogle Scholar
  14. Bernal, S.D., 1997, Drug Resistance in Oncology, Marcel Dekker, Inc., New York, USAGoogle Scholar
  15. Berrieman, H.K., Cawkwell, L., O’Kane, S.L., Smith, L., and Lind, M.J., 2006, Hsp27 may allow prediction of the response to single-agent vinorelbine chemotherapy in non-amall cell lung cancer. Oncol Rep 15:283–286PubMedGoogle Scholar
  16. Berwin, B., Hart, J.P., Rice, S., Gass, C., Pizzo, S.V., Post, S.R., and Nicchita, C.V., 2003, Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J 22:6127–6136PubMedGoogle Scholar
  17. Berwin, B., Delneste, Y., Lovingood, R.V., Post, S.R., and Pizzo, S.V., 2004, SREC-1, a type F scavenger receptor, is endocytic receptor for calreticulin. J Biol Chem 279:51250–51257PubMedGoogle Scholar
  18. Bienz, M., 2004, Beta catenin: a pivot between cell adhesion and Wnt signaling. Current Biology 15:64–67Google Scholar
  19. Binder, R.J., Harris, M.L., Menoret, A., and Srivastava, P.K., 2000, Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol 165:2582–2587PubMedGoogle Scholar
  20. Binder, R.J., and Srivastava, P.K., 2004, Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci USA 101:6128–6133PubMedGoogle Scholar
  21. Blackburn, R.V., Galoforo, S.S., Berns, C.M., Armour, E.P., McEachern, D., Corry, P.M., and Lee, Y.J, 1997, Comparison of tumor growth between hsp25- and hsp27-transfected murine L929 cells in nude mice. Int J Cancer 72:871–877PubMedGoogle Scholar
  22. Broquet, A.H., Thomas, G., Masliah, J., Trugnan, G., and Bachelet, M., 2003, Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606PubMedGoogle Scholar
  23. Burdon, R.H., 1986, Heat shock and the heat shock proteins. Biochem J 240:313–324PubMedGoogle Scholar
  24. Butt, E., Immeler, D., Meyer, H.E., Kotlyarov, A., Laass, K., and Gaestel, M., 2001, Heat shock protein 27 is a substrate of cGMP-dependent protein kinase in intact human platelets: phosphorylation-induced actin polymerization caused by HSP27 mutants. J Biol Chem 276:7108–7113PubMedGoogle Scholar
  25. Calderwood, S.K., Khaleque, A., Sawyer, D.B., Ciocca, D.R., 2006, Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172PubMedGoogle Scholar
  26. Cappello, F., Di Stefano, A., David, S., Rappa, F., Anzalone, R., La Rocca, G., D’Anna, S.E., Magno, F., Donner, C.F., Balbi, B., Zummo, G., 2006, Hsp60 and Hsp10 down-regulation predicts bronchial epithelial carrcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer 107:2417–2424PubMedGoogle Scholar
  27. Castellino, F., Boucher, P.E., Eichelberg, K., Mayhew, M., Rothman, J.E., Houghton, A.N., and Germain, R.N., 2000, Receptor-mediated uptake of antigen/heat shock proteins complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 191:1957–1964PubMedGoogle Scholar
  28. Cavallaro, U., Christofori, G., 2004, Multitasking in tumor progression. Signaling functions of cell adhesion molecules. Ann N Y Acad Sci 1014:58–66PubMedGoogle Scholar
  29. Chauhan, D., Li, G., Auclair, D., Hideshima, T., Richardson, P., Podar, K., Mitsiades, N., Mitsiades, C., Li, C., Kim, RS., Chen, L.B., Wong, W., and Anderson, K.C., 2003, Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood 101:3603–3614Google Scholar
  30. Chen, X., Tao, Q., Yu, H., Zhang, L., and Cao, X., 2002, Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol Lett 84:81–87PubMedGoogle Scholar
  31. Chiosis, G., Caldas Lopez, E, Solit, D., 2006, Heat shock protein-90 inhibitors: a chronicle from geldamicin to today’s agents. Curr Opin Investig Drugs, 7:534–541PubMedGoogle Scholar
  32. Ciocca, D.R., Puy, L.A., and Lo Castro, G., 1986, Localization of an estrogen-responsive protein in the human cervix during menstrual cycle, pregnancy, and menopause and in abnormal cervical epithelia without atypia. Am J Obstet Gynecol 155:1090–1096PubMedGoogle Scholar
  33. Ciocca, D.R., Puy, L.A., and Fasoli, L.C., 1989, Study of estrogen receptor, progesterone receptor, and the estrogen-regulated Mr 24,000 protein in patiens with carcinomas of endometrium and cervix. Cancer Res 49:4298–4304.PubMedGoogle Scholar
  34. Ciocca, D.R., Jorge, A.D., Jorge, O., Milutín, C., Hosokawa, R., Díaz Lestren, M., Muzzio, E., Schulkin, S., and Schirbu, R., 1991, Estrogen receptors, progesterone receptors and heat-shock 27KD protein in liver biopsy specimens from patients with hepatitis B virus infection. Hepatology 13:838–844PubMedGoogle Scholar
  35. Ciocca, D.R., Lo Castro, G., Alonio, L.V., Cobo, M.F., Lotfi, H., and Teyssie, A., 1992, Effect of human papillomavirus infection on estrogen receptor and heat shock protein p27 phenotype in human cervix and vagina. Int J Gynecol Path 11:113–121Google Scholar
  36. Ciocca, D.R., Oesterreich, G.C., Chamness, G.C., McGuire, W.L., and Fuqua, S.A.W., 1993, Heat shock protein 27,000 (HSP 27): Biological and clinical implications. J Natl Cancer Inst 85:1558–1570PubMedGoogle Scholar
  37. Ciocca, D.R., and Vargas Roig, L.M., 1997, Heat shock proteins and drug resistance in breast cancer. In Drug Resistance in Oncology (S.D. Bernal, ed.), Marcel Dekker Inc., New York, USA, pp 167–190Google Scholar
  38. Ciocca, D., and Calderwood, S.K., 2005, Heat shock proteins in cancer: diagnostic, prognostic, predictive and treatment implications. Cell Stress & Chaperones 10:86–103Google Scholar
  39. Ciocca, D.R., Vargas-Roig, L.M., Fanelli, M.A., and Nadin, S., 2005, Neoadjuvant chemotherapy in breast cancer: what are we learning from the molecular studies? Trends in Cancer Res 1:77–91.Google Scholar
  40. Ciocca, D.R., Gago, F.E., Fanelli, M.A., and Calderwood S.K., 2006, Co-expression of steroid hormone receptors (estrogen receptor α and/or progesterone receptors) and Her-2/neu: clinical implications. J Steroid Biochem Mol Biol 102:32–PubMedGoogle Scholar
  41. Ciupitu, A.M., Petersson, M., Kono, K., Charo, J., and Kiessling, R., 2002, Immunization with heat shock protein 70 from methylcholanthrene-induced sarcomas induces tumor protection correlating with in vitro T cell responses. Canc Immunol Immunother 51:163–170Google Scholar
  42. Czarnecka, A.M., Campanella, C., Zummo, G., Cappello, F., 2006, Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5:714–720PubMedGoogle Scholar
  43. Deichmann, M., Polychronidis, M., Benner, A., Kleist, C., Thome, M., Kahle, B., and Helmke, B.M., 2004, Expression of the heat shock cognate HSP73 correlates with tumor thickness of primary melanomas and is enhanced in melanoma metastases. Int J Oncol 25:259–268PubMedGoogle Scholar
  44. Delneste, Y., Magistrelli, G., Gauchat, J., Haeuw, J., Aubry, J., Nakamura, K., Kawakami-Honda, N., Goetsch, L., Sawamura, T., Bonnefoy, J., and Jeannin, P., 2002, Involmement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362PubMedGoogle Scholar
  45. Dong, D., Ko, B., Baumeister, P., Swenson, S., Costa, F., Markland, F., Stiles, C., Patterson, J.B., Bates, S.E., and Lee, A.S., 2005, Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res 65:5785–5791PubMedGoogle Scholar
  46. Doody, A.D., Kovalchin, J.T., Mihalyo, M.A., Hagymasi, A.T., Drake, C.G., and Adler, A.J., 2004, Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol 172:6087–6092PubMedGoogle Scholar
  47. Doppler, H., Storz, P., Li, J., Comb, M.J., and Toker, A., 2005, A phosphorylation state-specific antibody recognizes Hsp27, a novel substrate of protein kinase D. J Biol Chem 280:15013–15019PubMedGoogle Scholar
  48. Erkizan, O., Kirkali, G., Yorukoglu, K, and Kirkali, Z., 2004, Significance of heat shock protein-27 expression in patients with renal cell carcinoma. Urology 64:474–478PubMedGoogle Scholar
  49. Eustace, B.K., and Jay, D.G., 2004, Extracellular roles for molecular chaperone, hsp90. Cell Cycle 3:1098–1100PubMedGoogle Scholar
  50. Facciponte, J.G., MacDonald, I.J., Wang X.Y., Kim, H., Manjili, M.H, and Subjeck J.R., 2005, Heat shock proteins and scavenger receptors: role in adaptive immune responses. Immunol Invest 34:325–342PubMedGoogle Scholar
  51. Fernandez, P.M., Tabbara, S.O., Jacobs, L.K., Manning, F.C.R., Tsangaris, T.N., Schwartz, A.M., Kennedy, K.A., and Patierno, S.R., 2000, Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59:15–26PubMedGoogle Scholar
  52. Finlay, C., Hinds, P., Frey, A.B., and Levine, A.J., 1988, Mutations which activate p53 transformation with ras produce an altered p53 protein that preferentially binds to a heat shock protein hsc70. Mol Cell Biol 8:531–539PubMedGoogle Scholar
  53. Gatstpar, R., Gross, C., Rossbacher, L., Ellwart, J., Riegger, J., and Multhoff, G., 2004, The cell surface-localized heat shock protein 70 epitope TDK induces migration and cytolitic activity selectively in human NK cells. J Immunol 172:972–98Google Scholar
  54. Germanov, E., Berman, J.N., Guernsey, D.L., 2006, Current and future approaches for the therapeutic targeting of metastasis. Int J Mol Med. 18:1025–1036PubMedGoogle Scholar
  55. Gross, C., Schmidt-Wolf, I.G., Nagaraj, S., Gatspar, R., Ellwart, J., Kunz-Schughart, L.A., and Multhoff, G., 2003, Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress & Chaperones 8:348–360Google Scholar
  56. Habich, C., Baumgart, K., Kolb, H., and Burkart, V., 2002, The receptor for heat shock protein 60 on macrophages is saturable specific, and distinct from receptors for other heat shock proteins. J Immunol 168:568–576Google Scholar
  57. Hsu, P.L., and Hsu, S.M., 1998, Abundance of heat shock proteins (hsp89, hsp60, and hsp27) in malignant cells of Hodgkin disease. Cancer Res 58:5507–5513PubMedGoogle Scholar
  58. Irah, Y., Takamura, A., Leo, N., Manu,, Y., Sato, H., Surnaga, N., 2001, Homophilic complex formation of MT1 MMP facilitates pro MMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J 20:4782–4793Google Scholar
  59. Janetzki, S., Palla, D., Rosenhauer, V., Lochs, H., Lewis, J.J., and Srivastava, P.K., 2000, Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 88:232–38PubMedGoogle Scholar
  60. Jorge, O., Cuello Carrión, F.D., Jorge, A., and Ciocca, D.R., 2003, Helicobacter Pylori infection affects the expression of PCNA, p53, c-erbB-2 and Bcl-2 in the human gastric mucosa. Rev Esp Enferm Dig (Madrid) 95:97–104Google Scholar
  61. Kai, M., Nakatsura, T., Egami, H., Senju, S., Nishimura, Y., and Ogawa, M., 2003, Heat shock protein 105 is overexpressed in a variety of human tumors. Oncol Rep 10:1777–1782PubMedGoogle Scholar
  62. Katoh, M., Koninkcx, J., and Schumacher, U., 2000, Heat shock protein expression in human tumors grown in severe combined immunodeficient mice. Cancer Lett 161:113–120PubMedGoogle Scholar
  63. Kelly, J.M., Darcy, P.K., Markby, J.L., Godfrey, D.I., Takeda, K., Yagita, H., and Smyth, M.J., 2002, Induction of tumor-specific T cell memory by NK cells-mediated tumor rejection. Nat Immunol 3:83–90PubMedGoogle Scholar
  64. Kenny, M.K., Mendez, F., Sandigursky, M., Kurekattil, R.P., Goldman, J.D., Franklin, W.A., and Bases, R., 2001, Heat shock protein 70 binds to human apurinic/apyrimidic endonuclease and stimulates endonuclease activity at abasic sites. J Biol Chem 276:9532–9536PubMedGoogle Scholar
  65. Khaleque, A., Bharti, A., Sawyer, D., Gong, J., Benjamin, I.J., Stevenson, M.A., and Calderwood, S.K., 2005, Induction of heat shock proteins by heregulin beta 1 leads to protection from apoptosis and anchorage-independent growth. Oncogene 24:6564–6573PubMedGoogle Scholar
  66. Ki Deok, S., Mi-Young, L., Dae-Seop, S., Sangku, L., Kwang-Hee, S., Sukhoon, K., Young-Ki, P., Byoung-Mog, K., and Dong C., 2005, Blocking tumor cell migration and invasion with Biphenyl Isoxazole derivative kribb3, a synthetic molecule that inhibits hsp27 phosphoryltaion. J Biol Chem 280:41439–41448Google Scholar
  67. Kuppner, M.C., Gastpar, R., Gelwer, S., Noessner, E., Ochmann, O., Scharner, A., and Issels, R.D., 2001, The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocytes precursors. Eur J Immunol 31:1602–1609PubMedGoogle Scholar
  68. Landry, J., Lambert, H., Zhou, M., Lavoie, J.N., Hickey, E., Weber, L.A., and Anderson, C.W., 1992, Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 267:794–803PubMedGoogle Scholar
  69. Lee, J.H., Sun, D., Cho, K.J., Kim, M.S., Hong, M.H., Kim, I.K., Lee, J.S., and Lee, J.H., 2006, Overexpression of human 27 kDa heat shock protein in laryngeal cancer cells confers chemorresistance associated with cell growth delay. J Cancer Res Clin Oncol (E pub ahead of print)Google Scholar
  70. Lehman, T.A., Bennet, W.P., Matcalf, R.A., Welsh, J.A., Ecker, J., Modali, R.V., Ullrich, S., Romano, J.W., Appella, E., Testa, J.R., Gerwin, B.I., and Harris, C.C., 1991, p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res 51:4090–4096PubMedGoogle Scholar
  71. Li, J., and Lee, A.S., 2006, Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 6:45–54PubMedGoogle Scholar
  72. Lim, S.O., Park, S.G., Yoo, J.H., Park, Y.M., Kim, H.J., Jang, K.T., Cho, J.W., Yoo, B.C., Jung, G.H., Park, C.K., 2005, Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 11:2072–2079PubMedGoogle Scholar
  73. Ludwig, S., Engel, K., Hoffmeyer, A., Sithanandam, G., NeufeldB., Palm, D., Garstel, M., and Rapp, U.R., 1996, 3pK, a novel mitogen-activated protein (MAP) kinase-activated protein kinase, is targeted by three MAP kinase pathways. Mol Cell Biol 16:6687–6697PubMedGoogle Scholar
  74. Maizels, E.T., Peters, C.A., Kline, M., Cutler, R.E., Shanmugan, M., and Hunzicker-Dunn, M., 1998, Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C. Biochem J 332:703–712PubMedGoogle Scholar
  75. Maloney, A., and Workman, P., 2002, Hsp90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2:3–24PubMedGoogle Scholar
  76. Massa, C., Melani, C., and Colombo, M.P., 2005, Chaperon and adjuvant activity of hsp70: different natural requirement for cross-priming of chaperoned and bystander antigens. Cancer Res 65:7942–7949PubMedGoogle Scholar
  77. Michaelsson, J., Teixeira, D.M., Anchour, A., Lanier, L.L., Karre, K., and Soderstrom, K., 2002, A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196:1403–1414PubMedGoogle Scholar
  78. Mizzen, L., 1998, Immune responses to stress proteins: applications to infectious disease and cancer. Biotherapy 10:173–89PubMedGoogle Scholar
  79. Monick, M.M., Carter, A.B., Robeff, P.K., Flaherty, D.M., Peterson, M.W., and Hunninghake, G.W., 2001, Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of β-catenin. J Immunol 166:4713–4720PubMedGoogle Scholar
  80. Multhoff, G., Pfister, K., Botzler, C., Jordan, A., Scholz, R., Schmetzer, H., Burgstahler, R., and Hiddemann, W., 2000, Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. Int J Cancer 88:791–797PubMedGoogle Scholar
  81. Multhoff, G., 2006, Heat shock proteins and immunity. Handb Exp Pharmacol 172:279:304PubMedGoogle Scholar
  82. Nadin, S.B., Vargas-Roig, L.M., Cuello-Carrión, F.D., and Ciocca, D.R., 2003, Deoxyribonucleic acid damage induced by doxorubicin in peripheral blood mononuclear cells: possible roles for the stress response and the deoxyribonucleic acid repair process. Cell Stress & Chaperones 8:361–372Google Scholar
  83. Nadin, S.B., Vargas-Roig, L.M., Fanelli, M., Drago, G., Ibarra, J., and Ciocca, D.R., 2006, Hsp27 and Hsp70 may contribute with the DNA repair function of hMLH1 and hMSH2 in peripheral blood lymphocytes from normal subjects and cancer patients. 5th International Workshop on the Molecular Biology of Stress Responses, Concepción, Chile, pp 83Google Scholar
  84. Neckers, L., and Ivy, S.P., 2003, Heat shock protein 90, Curr Opin Oncol 15:419–424Google Scholar
  85. Nihei, T., Takahashi, S., Sagae, S., Sato, N., and Kikuchi, K., 1993, Protein interaction of retinoblastoma gene product pRb110 with Mr 73,000 heat shock cognate protein. Cancer Res 53:1702–1705PubMedGoogle Scholar
  86. Niu, P., Liu, L., Gong, Z., Tan, H., Wang, F., Yuan, J., Feng, Y., Wei, Q., Tanguay, R.M., and Wu, T., 2006, Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones 11:162–169PubMedGoogle Scholar
  87. Ohashi, K., Burkart, V., Flohe, S., and Kolb, H., 2000, Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558PubMedGoogle Scholar
  88. Ollins, G.J., Nikitakis, N., Norris, K., Herbert, C., Siavash, H., and Sauk, JJ., 2002, The production of the endostatin precursor collagen XVIII in head and neck carcinomas is modulated by CBP2/Hsp47. Anticancer Res 22:1977–1982PubMedGoogle Scholar
  89. Osada, M., Imaoka, S., and Funae, Y., 2004, Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1 alpha protein. FEBS lett 575:59–63PubMedGoogle Scholar
  90. Panjwani, N.N., Popova, L., and Srivastava, P.K., 2002, Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168:2997–3003PubMedGoogle Scholar
  91. Price, J.T., Quinn, J.M.W., Sims, N.A., Viesseux, J., Waldeck, K., Docherty, S.E., Myers, D., Nakamura, A., Waltham, M.C., Gillespie, M.T., and Thompson, E.W., 2005, The heat shock protein 90 inhibitor, 17-allylamino-17demethoxygeldamicin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 65:4929-4938PubMedGoogle Scholar
  92. Puy, L.A., Lo Castro, G., Olcese, J.E., Lotfi, H.O., Brandi, H.R., and Ciocca, D.R., 1989, Analysis of a 24-kilodalton (KD) protein in the human uterine cervix during abnormal growth. Cancer 64:1067–1073PubMedGoogle Scholar
  93. Quinlan, R., 2002, Cytoskeletal competence requires protein chaperones. In Progress in Molecular and Subcellular Biology, Vol 28 (A.-P. Arrigo and W.E.G. Müller, eds.), Springer-Verlag, Berlin, Germany, pp 219–233Google Scholar
  94. Ralhan, R., and Kaur, J., 1995, Differential expression of Mr 70,000 heat shock protein in normal, premalignant, and malignant human uterine cervix. Clin Cancer Res 1:1217–1222PubMedGoogle Scholar
  95. Roosi, A., Ciafre, S., Balsamo, M., Pierimarchi, P., and Santoro, M.G., 2006, Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer. Cancer Res 66:7678–85Google Scholar
  96. Sanderson, S., Valenti, M., Gowan, S., Patterson, L., Ahmad, Z., Workman, P., and Eccles, S., 2006, Benzoquinone ansamycin heat shock protein90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol Cancer Ther 5:522–532PubMedGoogle Scholar
  97. Schild, H., Arnold-Schild, D., Lammert, E., and Rammensee, H.G., 1999, Stress proteins and immunity-mediated by cytotoxic T lymphocytes. Curr Opin Immunol 11:109–113PubMedGoogle Scholar
  98. Shin, B.K., Wang, H., Yim, A.M., Le Naour, F., Brichory, F., Jang, J.H., Zhao, R., Puravs, E., Tra, J., Michael, C.W., Misek, D.E., and Hanash, S.M., 2003, Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone functions. J Biol Chem 278:7607–7616PubMedGoogle Scholar
  99. Singh-Jasuja, H., Toes, R.E., Spee, P., Munz, C., Hilf, N., Schoenberger, S.P., Ricciardi-Castagnoli, P., Neefjes, J., Rammensee, H.G., and Arnold-Schild, D., 2000, Cross-presentation of glycoprotein 96 associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 191:1965–1974PubMedGoogle Scholar
  100. Soga, S., Shiotsu, Y, Akinaga, S., and Sharma, S.V., 2003, Development of radicicol analogues. Curr Cancer Drug Targets 3:359–369PubMedGoogle Scholar
  101. Sondermann, H., Becker, T., Mayhew, M., Wieland, F., and Hartl, F.U., 2000, Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol Chem 381:1165–1174PubMedGoogle Scholar
  102. Srivastava, P.K., DeLeo, A.B., and Old, L.J., 1986, Tumor rejection antigens of chemically induced sarcomas in inbred mice. Proc Natl Acad Sci USA 83:3407–3411PubMedGoogle Scholar
  103. Strbo, N., Oizumi, S., Sotosek-Tokmadzic, V., and Podack, E.R., 2003, Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity 18:381–390PubMedGoogle Scholar
  104. Taira, T., Sawai, M., Ikeda, K., Tamai, K., Iguchi-Ariga, S.M., Ariga, H., 1999, Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expresión by interaction between c-myc and cbf/nf-y. J Biol Chem 274:24270–24279PubMedGoogle Scholar
  105. Todryk, S.M., Melcher, A.A., Dalgleish, A.G., and Vile, R.G., 2000, Heat shock proteins refine the danger theory. Immunology 99:334–337PubMedGoogle Scholar
  106. Tragosz, A., Pierzchalski, P., Krawiec, A., Szczyrk, U., Brzozowski, T., Konturek, S.J., and Pawlik, W.W., 2006, Helicobacter pylori inhibits expression of heat shock protein 70 (HSP70) in human epithelial cell line. Importance of Cag A protein. J Physiol Pharmacol 57:265–278Google Scholar
  107. Triantafilou, M., and Triantafilou, K., 2004, Heat shock protein 70 and heat shock protein 90 associate with Toll-like receptor 4 in response to lipopolysaccharide. Biochem Soc Trans 32:636–639PubMedGoogle Scholar
  108. Udono, H., and Srivastava, P.K., 1993, Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396PubMedGoogle Scholar
  109. Udono, H., and Srivastava, P.K., 1994, Comparision of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90 and hsp70. J Immunol 152:5398–5403PubMedGoogle Scholar
  110. Ulmann, R., Morbini, P., Halbwedl, I., Bongiovanni, M., Gogg-Kammerer, M., Papotti, M., Gabor, S., Renner, H., and Popper, H.H., 2004, Protein expression profiles in adenocarcinomas and squamous cell carcinomas of the lung generated using tissue microarrays. J Pathol 203:798–807Google Scholar
  111. Vabulas, R.M., Wagner, H., and Schild, H., 2002, Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol 270:169Google Scholar
  112. Vargas Roig, L.M., Fanelli, M.A., Lopez, L.A., Gago, F.E., Tello, O., Aznar, J.C., and Ciocca, D.R., 1997, Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect Prevent 21:441–451Google Scholar
  113. Walsh, R.C., Koukoulas, I, Garnham, A., Moseley, P.L., Hargreaves, M, and Febraio, M.A., 2001, Exercise increases serum Hsp72 in humans. Cell Stress & Chaperones 6:386–393.Google Scholar
  114. Wang Y., Kelly, C.G., Singh, M., McGowan, E.G., Carrara, A.S., Bergmeier, L.A., and Lehner, T., 2002, Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429PubMedGoogle Scholar
  115. Workman, P., 2004, Combinatorial attack on multistep oncogenesis by inhibiting the hsp90 molecular chaperone. Cancer Lett 206:149–157PubMedGoogle Scholar
  116. Xian Ma, Y., Fan, S., Xion, J., Yan, R.Q., Meng, Q., Gao, M., Goldberg, M., Fuqua, S.A.W., Pestell, R.G., and Rosen, E.M., 2003, Role of BRCA1 in heat shock response. Oncogene 22:10–27PubMedGoogle Scholar
  117. Xiao, C., Chen, S., Li, J., Hai, T., Lu, Q., Sun, E., Wang, W., Tanguay, R.M., and Wu, T., 2002, Association of Hsp70 and genotoxic damage in lymphocytes of workers exposed to coke-oven emission. Cell Stress Chaperones 7:396–402PubMedGoogle Scholar
  118. Xu, L., Chen, S., and Bergan R.C., 2006, MAPKAPK2 and hsp27 are downstream effectors of p38 MAP kinase mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer, Oncogene 25:2987–2998PubMedGoogle Scholar
  119. Yang, L., and Carbone D.P., 2004, Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92:13–27PubMedGoogle Scholar
  120. Yang, Q., Liu, S., Tian, Y., Hasan, C., Kersey, D., Salwen, H.R., Chlenski, A., Perlman, E.J., and Cohn, S.L., 2004, Methylation-associated silencing of the heat shock protein 47 gene in human neuroblastoma. Cancer Res 64:4531–4538PubMedGoogle Scholar
  121. Yano, M., Naito, Z., Yokoyama, M., Shiraki, Y., Ishiwata, T., Inokuchi, M., and Asano, G., 1999, Expression of hsp90 and cyclin D1 in human breast cancer. Cancer Lett 137:45–51.PubMedGoogle Scholar
  122. Yeo, M., Park, H.K., Kim, D.K., Cho, S.W., Kim, Y.S., Cho, S.Y., Paik, Y.K., Hahm, K.B., 2004, Restoration of heat shock protein 70 suppresses gastric mucosal inducible nitric oxide synthase expression induced by Helicobater pylori. Proteomics 4:3335–3342PubMedGoogle Scholar
  123. Zanin-Zhorov, A., Cahalon, L., Tal, G., Margalit, R., Lider, O., and Cohen, I.R., 2006, Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J Clin Invest 116:2022–2032PubMedGoogle Scholar
  124. Zhang, D., Tai, L.K., Wong, L.L., Chiu, L.L., Sethi, S.K., Koay, E.S., 2005, Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in Her-2/neu-positive breast cancer. Mol Cell Proteomics 4:1686–1696PubMedGoogle Scholar
  125. Zou, W., 2005, Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat Rev Cancer 5:263–274PubMedGoogle Scholar
  126. Zsebik, B., Citri, A., Isola, J., Yarden, Y., Szollosi, J., and Vereb, G., 2006, Hsp90 inhibitor 17-AAG reduces ErbB2 levels and inhibits proliferation of the trastuzumab resistant breast tumor cell line JIMT-1. Immunol Lett 104:146–155.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Daniel R. Ciocca
    • 1
  • Mariel A. Fanelli
    • 1
  • F. Dario Cuello-Carrión
    • 1
  • Stuart K. Calderwood
    • 2
    • 3
  1. 1.Oncology LaboratoryInstitute of Experimental Medicine and Biology of Cuyo (CRICYT-CONICET) and Argentine Foundation for Cancer Research (FAIC)5500 MendozaArgentina
  2. 2.Division of Molecular and Cellular Radiation OncologyBeth Israel Deaconess Medical Center
  3. 3.Department of MedicineBoston University School of MedicineUSA

Personalised recommendations